Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research. K E Y W O R D S extreme drought, hydraulic traits, rainfall seasonality, tree mortality | 3123 POWERS Et al.
Tropical dry forests (TDF) in Mesoamerica are highly endangered by the expansion of human activities (e.g., agriculture and cattle ranching). In contrast, TDF in Costa Rica have experienced outstanding restoration due to changes in economic and conservation policies. Currently TDF landscapes in Costa Rica are a mosaic of different successional stages. Tree breeding systems and pollination and dispersal syndromes are key elements for understanding restoration processes in TDFs. In this study we describe and compare tree species composition and diversity in three TDF successional stages (early, intermediate and late) in Guanacaste, Costa Rica. We describe for the first time tree species breeding systems and pollination and dispersal syndromes for the largest and most significant TDF remnant in Mesoamerica. We set up nine plots, three per successional stage, and we measured and identified 1,072 trees from 96 species. Species richness and diversity indices were higher for the intermediate stage. Monoecy was the most common breeding system, as in other tropical life zones. Insects were the dominant pollinators, facilitated by the trees' small inflorescences. Wind was found to be not only the next most influential pollinator, mainly in open and disturbed early forests, but also it was also a good seed dispersal agent. As TDF age increases so does the relevancy of birds and mammals as dispersers; the late stage therefore has more tree species with adaptations to these dispersers.
Abstract. Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by Euser et al. (2014) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important.In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated.We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r 2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m −2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be related to the biomass heat storage, which is neglected in this study.The BR-DTS method overestimates the latent heat flux on average by 18.7 W m −2 , with RMSE = 90 W m −2 . The sensible heat flux is underestimated on average by 10.6 W m −2 , with RMSE = 76 W m −2 . Estimates of the BR-DTS can be improved once the uncertainties in the energy balance are reduced. However, applying, for example, Monin-Obukhov similarity theory could provide independent estimates for the sensible heat flux. This would make the determination of the highly uncertain and difficult to determine net available energy redundant.
The forest-steppe ecotone in NW Patagonia is a semiarid ecosystem affected by natural and anthropogenic fires, and overgrazing by sheep. Following a wild fire in the driest portion of this ecotone, a 3-year study was conducted to assess the impacts of a single application of inorganic and organic fertilizers on soil and vegetation recovery. Organic fertilizers were composts derived from biosolids and municipal solid wastes. Six treatments were evaluated: screened and unscreened biosolids compost and municipal solid wastes compost (40 Mg ha −1 ), inorganic fertilizer (100 kg N and 35 kg P ha −1 ), and no application. Soils were chemically characterized, and soil microbial activity was assessed as potential respiration and N-mineralization. Vegetation responses included plant cover, composition, phytomass, and N resorption prior to abscission, and leaf litter quality of the dominant species. Organic fertilizers increased soil organic matter, nutrients and microbial activity. Plant cover and aboveground phytomass, dominated by the native perennial tussock grass Poa ligularis, showed a higher increase with inorganic than with organic fertilization. While vegetation responded more to inorganic fertilizer, due to its higher initial pulse of available N, organic fertilizers had a positive impact on soil chemical and biological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.