The purpose of this study was to explore the possibility of using electrocorticographic (ECoG) recordings from subdural electrodes placed over the motor cortex to identify the upper limb motion performed by a human subject. More specifically, we were trying to identify features in the ECoG signals that could help us determine the type of movement performed by an individual. Two subjects who had subdural electrodes implanted over the motor cortex were asked to perform various motor tasks with the upper limb contralateral to the site of electrode implantation. ECoG signals and upper limb kinematics were recorded while the participants were performing the movements. ECoG frequency components were identified that correlated well with the performed movements measured along 6D coordinates (X, Y, Z, roll, yaw and pitch). These frequencies were grouped using histograms. The resulting histograms had consistent and unique shapes that were representative of individual upper limb movements performed by the participants. Thus, it was possible to identify which movement was performed by the participant without prior knowledge of the arm and hand kinematics. To confirm these findings, a nearest neighbour classifier was applied to identify the specific movement that each participant had performed. The achieved classification accuracy was 89%.
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.