Multiferroics in which giant ferroelectric polarization and magnetism coexist are of tremendous potential for engineering disruptive applications in information storage and energy conversion. Yet the functional properties of multiferroics are thought to be affected detrimentally by the presence of point defects, which may be abundant due to the volatile nature of some constituent atoms and the high temperatures involved in the synthesis of materials. Here, we demonstrate with theoretical methods that oxygen vacancies may enhance the functionality of multiferroics by radically changing their magnetic interactions in thin films. Specifically, oxygen vacancies may restore missing magnetic super-exchange interactions in large axial ratio phases, leading to full antiferromagnetic spin ordering, and induce the stabilization of ferrimagnetic states with considerable net magnetizations. Our theoretical study should help to clarify the origins of long-standing controversies in bismuth ferrite and improve the design of technological applications based on multiferroics.
Photocatalytic materials are pivotal for the implementation of disruptive clean energy applications such as conversion of H2O and CO2 into fuels and chemicals driven by solar energy. However, efficient and cost-effective materials able to catalyze the chemical reactions of interest when exposed to visible light are scarce due to the stringent electronic conditions that they must satisfy. Chemical and nanostructuring approaches are capable of improving the catalytic performance of known photoactive compounds however the complexity of the synthesized nanomaterials and sophistication of the employed methods make systematic design of photocatalysts difficult. Here, we show by means of first-principles simulation methods that application of biaxial stress, η, on semiconductor oxide thin films can modify their optoelectronic and catalytic properties in a significant and predictable manner. In particular, we show that upon moderate tensile strains CeO2 and TiO2 thin films become suitable materials for photocatalytic conversion of H2O into H2 and CO2 into CH4 under sunlight. The band gap shifts induced by η are reproduced qualitatively by a simple analytical model that depends only on structural and dielectric susceptibility changes. Thus, epitaxial strain represents a promising route for methodical screening and rational design of photocatalytic materials.
This systematic review evaluates the existing literature about medial tibial stress syndrome (MTSS) in novice and recreational runners. PubMed/MEDLINE, EMBASE, Web of Science, Scopus, SPORTDiscus and CINAHL databases were searched until July 2020. Studies covering risk factors, diagnostic procedures, treatment methods and time to recovery of MTSS in novice and recreational runners were selected. Eleven studies met the inclusion criteria and were included. The risk factors of MTSS are mainly intrinsic and include higher pelvic tilt in the frontal plane, peak internal rotation of the hip, navicular drop and foot pronation, among others. Computed tomography (CT) and pressure algometry may be valid instruments to corroborate the presence of this injury and confirm the diagnosis. Regarding treatment procedures, arch-support foot orthoses are able to increase contact time, normalize foot pressure distribution and similarly to shockwave therapy, reduce pain. However, it is important to take into account the biases and poor methodological quality of the included studies, more research is needed to confirm these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.