Weed management is one of the most important aspects of crop productivity; knowing the amount and the locations of weeds has been a problem that experts have faced for several decades. This paper presents three methods for weed estimation based on deep learning image processing in lettuce crops, and we compared them to visual estimations by experts. One method is based on support vector machines (SVM) using histograms of oriented gradients (HOG) as feature descriptor. The second method was based in YOLOV3 (you only look once V3), taking advantage of its robust architecture for object detection, and the third one was based on Mask R-CNN (region based convolutional neural network) in order to get an instance segmentation for each individual. These methods were complemented with a NDVI index (normalized difference vegetation index) as a background subtractor for removing non photosynthetic objects. According to chosen metrics, the machine and deep learning methods had F1-scores of 88%, 94%, and 94% respectively, regarding to crop detection. Subsequently, detected crops were turned into a binary mask and mixed with the NDVI background subtractor in order to detect weed in an indirect way. Once the weed image was obtained, the coverage percentage of weed was calculated by classical image processing methods. Finally, these performances were compared with the estimations of a set from weed experts through a Bland–Altman plot, intraclass correlation coefficients (ICCs) and Dunn’s test to obtain statistical measurements between every estimation (machine-human); we found that these methods improve accuracy on weed coverage estimation and minimize subjectivity in human-estimated data.
This paper presents the design and validation of a traceability system, based on radio frequency identification (RFID) technology and Internet of Things (IoT) services, intended to address the interconnection and cost-implementation problems typical in traceability systems. The RFID layer integrates temperature sensors into RFID tags, to track and trace food conditions during transportation. The IoT paradigm makes it possible to connect multiple systems to the same platform, addressing interconnection problems between different technology providers. The cost-implementation issues are addressed following the Data as a Service (DaaS) billing scheme, where users pay for the data they consume and not the installed equipment, avoiding the big initial investment that these high-tech solutions commonly require. The developed system is validated in two case scenarios, one carried out in controlled laboratory conditions, monitoring chopped pumpkin. Another case, carried out in a real scenario, monitors oranges sent from Valencia, Spain to Cork, Ireland.
The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.
One-third of utilities around the globe report a loss of more than 40 percent of clean water due to leaks. By reducing the amount of water leaked, smart water networks can help reduce the money wasted on producing or purchasing water, and the related energy required to pump water and treat water for distribution. A UK demo site is presented focusing on leak management, integrating fixed flow and pressure instrumentation, advanced (smart) metering infrastructure and novel instruments (capable of high resolution monitoring). Example data analysis results for this site using the AURA-Alert anomaly detection system for Condition Monitoring are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.