Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.
The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio-ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio-ester-containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3-convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3-convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators. Role of TED relocation in complement activation and regulationComplement is a major component of innate immunity with crucial roles in microbial killing, apoptotic cell clearance, immune complex handling and modulation of adaptive immune responses. During complement activation, three activation pathways converge in the cleavage of the protein C3 to generate the activated fragment C3b. The transition from C3 to C3b involves large conformational changes [1][2][3]. These changes affect several regions in the C3 molecule, but the repositioning of the thio-ester-containing domain (TED) provides a key requirement for complement activation. In C3, the TED blocks most of the surfaces potentially capable of binding to other complement components, thus producing a rather inactive molecule. In C3b, the Abbreviations AP, alternative pathway; C3bB, C3
C3 is the central component of the complement system. Upon activation, C3 sequentially generates various proteolytic fragments, C3a, C3b, iC3b, C3dg, each of them exposing novel surfaces, which are sites of interaction with other proteins. C3 and its fragments are therapeutic targets and markers of complement activation. We report the structural and functional characterization of four monoclonal antibodies (mAbs) generated by immunizing C3-deficient mice with a mixture of human C3b, iC3b and C3dg fragments, and discuss their potential applications. This collection includes three mAbs interacting with native C3 and inhibiting AP complement activation; two of them by blocking the cleavage of C3 by the AP C3-converase and one by impeding formation of the AP C3-convertase. The interaction sites of these mAbs in the target molecules were determined by resolving the structures of Fab fragments bound to C3b and/or iC3b using electron microscopy. A fourth mAb specifically recognizes the iC3b, C3dg, and C3d fragments. It binds to an evolutionary-conserved neoepitope generated after C3b cleavage by FI, detecting iC3b/C3dg deposition over opsonized surfaces by flow cytometry and immunohistochemistry in human and other species. Because well-characterized anti-complement mAbs are uncommon, the mAbs reported here may offer interesting therapeutic and diagnostic opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.