Virtual compound libraries are increasingly being used in computer-assisted drug discovery applications and have led to numerous successful cases. This paper aims to examine the fundamental concepts of library design and describe how to enumerate virtual libraries using open source tools. To exemplify the enumeration of chemical libraries, we emphasize the use of pre-validated or reported reactions and accessible chemical reagents. This tutorial shows a step-by-step procedure for anyone interested in designing and building chemical libraries with or without chemoinformatics experience. The aim is to explore various methodologies proposed by synthetic organic chemists and explore affordable chemical space using open-access chemoinformatics tools. As part of the tutorial, we discuss three examples of design: a Diversity-Oriented-Synthesis library based on lactams, a bis-heterocyclic combinatorial library, and a set of target-oriented molecules: isoindolinone based compounds as potential acetylcholinesterase inhibitors. This manuscript also seeks to contribute to the critical task of teaching and learning chemoinformatics.
We report synthesis, characterization, biological evaluation, and molecular-docking studies of 18 thieno[2,3-b]pyridines with a phenylacetamide moiety at position 2, which is disubstituted with F, Cl, Br, or I at position 4, and with electron-withdrawing and electron-donating groups (-CN, -NO2, -CF3, and -CH3) at position 2, to study how the electronic properties of the substituents affected the FOXM1-inhibitory activity. Among compounds 1–18, only those bearing a -CN (regardless of the halogen) decreased FOXM1 expression in a triple-negative breast cancer cell line (MDA-MB-231), as shown by Western blotting. However, only compounds 6 and 16 decreased the relative expression of FOXM1 to a level lower than 50%, and hence, we determined their anti-proliferative activity (IC50) in MDA-MB-231 cells using the MTT assay, which was comparable to that observed with FDI-6, in contrast to compound 1, which was inactive according to both Western blot and MTT assays. We employed molecular docking to calculate the binding interactions of compounds 1–18 in the FOXM1 DNA-binding site. The results suggest a key role for residues Val296 and Leu289 in this binding. Furthermore, we used molecular electrostatic potential maps showing the effects of different substituents on the overall electron density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.