This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. Many coasts feature sequences of Quaternary and Neogene shorelines that are shaped by a combination of sealevel oscillations and tectonics. We compiled a global synthesis of sea-level changes for the following highstands: MIS 1, MIS 3, MIS 5e and MIS 11. Also, we date the apparent onset of sequences of paleoshorelines either from published data or tentatively extrapolating an age for the uppermost, purported oldest shoreline in each sequence. Including the most documented MIS 5e benchmark, we identify 926 sequences out of which 185 also feature Holocene shorelines. Six areas are identified where elevations of the MIS 3 shorelines are known, and 31 feature elevation data for MIS 11 shorelines. Genetic relationships to regional geodynamics are further explored based on the elevations of the MIS 5e benchmark. Mean apparent uplift rates range from 0.01 ± 0.01 mm/yr (hotspots) to 1.47 ± 0.08 mm/yr (continental collision). Passive margins appear as ubiquitously uplifting, while tectonic segmentation is more important on active margins. From the literature and our extrapolations, we infer ages for the onset of formation for~180 coastal sequences. Sea level fingerprinting on coastal sequences started at least during mid Miocene and locally as early as Eocene. Whether due to the changes in the bulk volume of seawater or to the temporal variations in the shape of ocean basins, estimates of eustasy fail to explain the magnitude of the apparent sea level drop. Thus, vertical ground motion is invoked, and we interpret the longlasting development of those paleoshore sequences as the imprint of glacial cycles on globally uplifted margins in response to continental compression. The geomorphological expression of the sequences matches the amplitude and frequency of glacial cyclicity. From middle Pleistocene to present-day, moderately fast (100,000 yrs) oscillating sea levels favor the development of well identified strandlines that are distinct from one another. Pliocene and Lower Pleistocene strandlines associated with faster cyclicity (40,000 yrs) are more compact and easily merge into rasas, whereas older Cenozoic low-frequency eustatic changes generally led to widespread flat-lying coastal plains.
Tectonics, v. 25, n. 3, p. 22 pp, 2006. http://dx.doi.org/10.1029/2004TC001723International audienc
[1] This paper presents a combined analysis of geological and geophysical data collected both onshore and offshore along the northwestern Peru forearc area (3°30 0 -7°30 0 S), from the coastal plain to the trench axis. Onshore, geomorphic analysis places constraints on the relative importance of eustatic versus tectonic factors in preserving and modifying the uplifted coastal landforms along the coastal plain. Breaking-wave morphologic markers were dated using the in situ produced 10 Be cosmonuclide. The data document a tectonic segmentation, allowing us to differentiate two areas with regard to their evolution through time: the northern Cabo Blanco and the southern Paita-Illesca segments. For the past 200 kyr, both segments uplifted at high rates of 10 to 20 mm yr À1 through tectonic pulses coeval with the eustatic deglacial sea level rises of isotope stage 1 and warm isotope substage 5e, respectively. The uplift and related extensive emersion of the coastal plain require high coupling along the subduction zone and/or underplating at depth. Offshore, industry-acquired reflection seismic lines combined with EM12 bathymetric data allow us to investigate the tectonic regime and deformation of the continental margin and shelf. Major dipping seaward detachments control the long-term subsidence of this area. These main tectonic features define a tectonic segmentation. The Talara, Paita, and Sechura segments are identified from north to south. No clear tectonic correlation in time exists between the onshore and the continental margin segmentations, or in space either. The longterm subsidence of the offshore, indicative of subduction erosion working at depth, requires low coupling along the subduction channel at depth. The distribution of permanent deformation along the northern Peru forearc area includes long-term uplift along the coastal plain and long-term subsidence along the continental margin, the neutral line being located within the 10 km seaward from the Present coastline. An extensive sequence of raised marine cliffs and associated notches evidences that the most recent uplift step (20-23 ka to Present) along the Cabo Blanco segment is related to a sequence of major earthquakes. We infer that eustacy exerts important feedback coupling to the seismogenic behavior of the North Peru subduction zone. We speculate that during sea level fall, pore fluid pressure diminishes along the subduction channel inducing a possible seaward migration of the locked zone (i.e., migration of the updip limit) reaching a maximum by the end of the eustatic low stand. During eustatic sea level rise, pore fluid pressure increases along the subduction channel. This in turn is capable of weakening the previously locked zone along the plate interface beginning an earthquake sequence. Earth's orbital variations are a potential external cause that may control the physical processes at work along plate interface.
The SW Ecuador‐NW Peru forearc region is the southernmost location, where the Caribbean large igneous province (CLIP) interacted with the South American margin since the Late Cretaceous. The accretion of the CLIP to the margin led to the entrapment of the North Andean crustal Sliver, conforming the underlying basement of the forearc region in Ecuador, whereas in NW Peru, forearc depocenters involve rocks of continental affinity. Many existing tectonic reconstructions have treated these two areas independently, largely based on their crustal affinities. In contrast, this study integrates previous studies into an analysis of unpublished seismic profiles, potential field data, outcrop stratigraphy, and recent studies dealing with the dynamics of allochthonous terrane accretion along continental margins. Our integrated approach shows that SW Ecuador was dominated by a Late Cretaceous deforming outer wedge, which may have constituted a remnant of a northeast or northwest dipping obliquely obducted oceanic block at the edge of the CLIP. This tectonic phase was governed by plate instability, affecting NW Peru and SW Ecuador, followed by reestablishment of the margin by early Eocene. The resulting margin configuration and the spatial distribution of the different tectonic elements seem to have played a key role into the further Cenozoic development of the forearc region. The model presented in this study proposes that the accretion of buoyant oceanic terranes may have had a profound impact on the early margin configuration of SW Ecuador and NW Peru and led to the development of localized but genetically related forearc depocenters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.