A high proportion of agrochemicals are chiral compounds. Since stereoisomers often show different biological and physiological properties, the biological and metabolic responses to these compounds and their fate in the environment are expected to be different. In this work we investigate a possible stereo and/or enantioselective degradation in soil and plants (sunflower) of the fungicide Metalaxyl (rac-Metalaxyl) and the new compound Metalaxyl-M ((-)-(R)-Metalaxyl) and propose procedures for extraction, cleanup, chromatographic separation of enantiomers, and determination of the R : S ratio by using an HPLC chiral column. The degradation of the two stereoisomers of Metalaxyl proved to be enantioselective and dependent on the media: the (+)-(S)-enantiomer showed a faster degradation in plants, while the (-)-(R)-enantiomer showed a faster degradation in soil. In this study there was no evidence that racemization of Metalaxyl-M took place either in soil or in sunflowers.
A possible stereospecific and/or stereoselective mechanism of biodegradation for metalaxyl and metalaxyl-M was studied to elucidate their behavior in sunflower plants and to compare their biodegradation. Greenhouse experiments were carried out to confirm the same efficacy of the two fungicides against infections by Plasmopara helianthi in sunflower plants. The two fungicides appear to have the same behavior regarding both the protection against plant infections and the mode of translocation and the rate and pathway of biotransformation, but we have evidence that this biotransformation process is enantioselective. Furthermore, we propose procedures for a chromatographic separation of enantiomers and acid metabolites of the fungicides and for the determination of the R:S ratio by HPLC chiral analyses. This study emphasizes the importance of examining the fate of both stereoisomers of a chiral agrochemical in an environmental system for the correct use of enantiomerically pure agrochemical compounds.
Abstract. The mixture of volatile compounds emitted by Brassica oleracea var. sabauda changed significantly in response to feeding and/or oviposition by Murgantia histrionica (Heteroptera: Pentatomidae). Volatiles were collected from (1) healthy plants and those with (2) feeding punctures, (3) a combination of feeding punctures and oviposition, (4) feeding punctures and one hatched egg mass and (5) plants bearing only an egg mass. In the case of plants with feeding punctures or feeding punctures plus an egg mass, the volatiles were also collected at different time intervals after plants were subjected to these two treatments (0-24 h, 24-48 h and 48-72 h). Gas chromatographic and gas chromatograph-mass spectrometric analysis showed that the percent emission of several compounds changed significantly from plants subjected to the feeding and oviposition or just oviposition. Percentage of terpenes generally decreased after feeding and oviposition, although the percentage emission of (E)--caryophyllene from these plants and those with just feeding punctures significantly increased. Plants with just an egg mass emitted linalool de novo but not (E)--ocimene. The emission of jasmonates, mainly methyl jasmonate, increased from plants with feeding punctures plus an egg mass compared to those with only an egg mass. Higher percentages of the volatile glucosinolate derivatives (VGSs), mainly 4-methoxy-3-indolylacetonitrile, were emitted by plants with feeding punctures and an egg mass. The percentage emission of most of these compounds increased during the first 24 h after the treatment and then decreased over the next 24 h, except for methyl jasmonate, which remained high also 48-72 h later. The possible ecological roles of such volatiles in plant interactions with the second and third trophic levels are discussed.
Jasmonates are signalling molecules induced in plants as a response to various biotic and/or abiotic stresses. As ozone is known to activate defense responses in plants, we have monitored the concentration of jasmonic acid in tomato leaves during and after an acute exposure to this abiotic elicitor. In this experiment, we observed that the maximum induction of jasmonic acid in O3-fumigated plants occurred 9 h after the end of treatment and the concentration of jasmonic acid in stressed plants increased 13-fold. However, the level of endogenous methyl-jasmonate was constant during the observed period. The extraction and quantification of jasmonic acid as its methyl ester was performed by headspace-solid-phase microextraction (or HS-SPME) in combination with GC-FID and GC-MS. The sensitivity (LOD = 2 ng/g) of this method permitted the detection and quantification of jasmonic acid present in plant tissues at very low concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.