Day by day, huge amount of information is collected in medical databases. These databases include quite interesting information that could be exploited in diagnosis of illnesses and medical treatment of patients. Classification of these data is getting harder as the databases are expanded. On the other hand, automated image analysis and processing is one of the most promising areas of computer vision used in medical diagnosis and treatment. In this context, retinal fundus images, offering very high resolutions that are sufficient for most of the clinical cases, provide many indications that could be exploited in diagnosing and screening retinal degenerations or diseases. Consequently, there is a strong demand in developing automated evaluation systems to utilize the information stored in the medical databases. This study proposes an automatic method for segmentation of ARMD in retinal fundus images. The method used in the automated system extracts lesions of the ARMD by employing a statistical method. In order to do this, the statistical segmentation method is first used to extract the healthy area of the macula that is more familiar and regular than the unhealthy parts. Here, characteristic images of the patterns of the macula are extracted and used to segment the healthy textures of an eye. In addition to this, blood vessels are also extracted and then classified as healthy regions. Finally, the inverse image of the segmented image is generated which determines the unhealthy regions of the macula. The performance of the method is examined on various quality retinal fundus images. Segmented images are also compared with consecutive images of the same patient to follow up the changes in the disease.
In this article, an improved approach for editing color images has been presented. In this approach, using the Poisson equation, a guided vector field is created by employing source and target images within a selected region at the first step. Next, the guided vector is used in generating the result image. Most of the existing techniques in the literature perform image editing without taking color information into account. However, without utilizing color information, image geometry cannot be created properly in some cases which may result in unsatisfactory results. Unlike the existing methods, the proposed study utilizes all the information contained in each of the color channels in computing gradient norm and performing inpainting process. The test results show that the suggested technique generates satisfactory results in editing color images.
Seismology, which is a sub-branch of geophysics, is one of the fields in which data mining methods can be effectively applied. In this chapter, employing data mining techniques on multivariate seismic data, decomposition of non-spatial variable is done. Then k-means clustering, density-based spatial clustering of applications with noise (DBSCAN), and hierarchical tree clustering algorithms are applied on decomposed data, and then pattern analysis is conducted using spatial data on the resulted clusters. The conducted analysis suggests that the clustering results with spatial data is compatible with the reality and characteristic features of regions related to earthquakes can be determined as a result of modeling seismic data using clustering algorithms. The baseline metric reported is clustering times for varying size of inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.