Abstract. The paper presents selected theoretical aspects concerning viscoelastic dynamic modelling of resilient elements used in railway tracks. In order to characterize the research methodology for resilient mats in railway tracks, German Standards [1-4] are used herein. The main goal of the paper is to demonstrate the procedure of insertion loss calculation for a single degree of freedom truck system containing under-ballast mats. Selected results of certain dynamic characteristics of resilient truck systems (transmissibility, Bode and Nyquist plots etc.) are also discussed. The results of calculations visualized in graphs, were obtained by using own applications written in programming language MATLAB.
The present paper is dedicated to the analysis of under sleeper pads (USP), which are resilient elements used in ballasted track systems as vibration isolators. Four types of USP are considered. The authors present the results of laboratory tests, which are then used as input values for the finite element (FE) and mechanical model of the structure. A special focus is put on the description of an original four-degree-of-freedom (4DoF) mechanical model of the system that includes a fractional rheological model of USP. Using the proposed approaches, the dynamic characteristics of under sleeper pads are determined, and conclusions on vibration isolation effectiveness are drawn.
Abstract. The paper presents systematization and description of vibroacoustic isolators used in railway tracks (due to track structure type), with special attention paid to resilient mats. As in the second part of the paper the state-space mechanical model of a system with Under-Ballast Mat is formulated. Also some numerical problems arising from the mass matrix singularity are discussed. The poles of the system were calculated by using Matlab. Moreover, the influence of various parameters on the system's insertion loss and its transmissibility was visualized in figures.
The paper presents results of the laboratory tests made for the prototype resilient under sleeper pads in the Warsaw University of Technology laboratory unit. These pads are dedicated to reduce vibrations transmitted to the vicinity of the railroad and to improve the resistance of the railroad structure. The laboratory testing program was carried out for elastomeric materials (polyurethane and rubber based) due to the PN-EN 16730 standard. The obtained values of the key parameters were used in order to determine the insertion loss vibration level by applying analytical method. The paper presents the influence of selected parameters i.e. static and dynamic moduli on the reduction of vibration and structure-borne sound level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.