The structural, electronic, bonding, and elastic properties of the low-temperature orthorhombic phase of NH(3)BH(3) are studied by means of first-principles total energy calculations based on the pseudopotential method. The calculated structural parameters of NH(3)BH(3) are found to be in good agreement with the experimental values. From the band structure calculations, the compound is found to be an indirect bandgap insulator with the bandgap of 5.65 eV (5.90 eV) with LDA(GGA) along the Γ-Z direction. The Mulliken bond population and the charge density distributions are used to analyze the chemical bonding in NH(3)BH(3) . The study reveals that B-H bonds are more covalent than N-H bonds. The elastic constants are predicted for ambient as well as pressures up to 6 GPa, from which theoretical values of all the related mechanical properties such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factors are calculated. It is found that NH(3)BH(3) is mechanically stable at ambient and also external pressures up to 6 GPa. As pressure increases all the calculated elastic moduli of NH(3)BH(3) increase, indicating that the compound becomes more stiffer and hard under pressure. From the ratio of shear modulus to bulk modulus (G/B), we conclude NH(3)BH(3) to be ductile in nature, and the ductility increases with pressure. The present results confirm the experimentally observed less plastic nature of the low-temperature phase of NH(3)BH(3) .
The structural, electronic, optical, and vibrational properties of LiN(3) under high pressure have been studied using plane wave pseudopotentials within the generalized gradient approximation for the exchange and correlation functional. The calculated lattice parameters agree quite well with experiments. The calculated bulk modulus value is found to be 23.23 GPa, which is in good agreement with the experimental value of 20.5 GPa. Our calculations reproduce well the trends in high-pressure behavior of the structural parameters. The present results show that the compressibility of LiN(3) crystal is anisotropic and the crystallographic b-axis is more compressible when compared to a- and c-axes, which is also consistent with experiment. Elastic constants are predicted, which still awaits experimental confirmation. The computed elastic constants clearly show that LiN(3) is a mechanically stable system and the calculated elastic constants follow the order C(33) > C(11) > C(22), implying that the LiN(3) lattice is stiffer along the c-axis and relatively weaker along the b-axis. Under the application of pressure the magnitude of the electronic band gap value decreases, indicating that the system has the tendency to become semiconductor at high pressures. The optical properties such as refractive index, absorption spectra, and photoconductivity along the three crystallographic directions have been calculated at ambient as well as at high pressures. The calculated refractive index shows that the system is optically anisotropic and the anisotropy increases with an increase in pressure. The observed peaks in the absorption and photoconductivity spectra are found to shift toward the higher energy region as pressure increases, which implies that in LiN(3) decomposition is favored under pressure with the action of light. The vibrational frequencies for the internal and lattice modes of LiN(3) at ambient conditions as well as at high pressures are calculated from which we predict that the response of the lattice modes toward pressure is relatively high when compared to the internal modes of the azide ion.
The quasiparticle band structure of the low temperature orthorhombic phase of NH3BH3 is studied by using the GW approximation. It is found that NH3BH3 is an insulator with a value of the band gap of 5.90 eV with GGA and of 9.60 eV with the GW approximation. Then, the optical properties of NH3BH3 are obtained by the calculation of the dielectric function, corrected by a scissor shift operation corresponding to the GW correction on the band gap. Also, the optical anisotropy in NH3BH3 is analyzed through the refractive index and static dielectric constants along the different crystallographic directions. Finally, it is found that the energy loss function has a prominent peak at 22.26 eV; at these frequencies (above 22.26 eV) NH3BH3 becomes transparent. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.