The number of waveguides crossing an intersection increases with the development of complex photonic integrated circuits. Numerical simulations are presented to demonstrate that Maxwell's fish-eye (MFE) lens can be used as a multiband crossing medium. In previous designs of waveguide intersection, bends are needed before and after the intersection to adjust the crossing angle resulting in a larger footprint. The presented design incorporates the waveguide bends into the intersection which saves footprint. In this paper, 4×4 and 6×6 intersections based on ideal and graded photonic crystal (GPC) MFE lenses are investigated, where 4 and 6 waveguides intersect, respectively. The intersection based on ideal MFE lens partially covers the O, E, S, C, L, and U bands of optical communication, while the intersection based on GPC-MFE lens is optimized to cover the entire C-band. For 4×4 and 6×6 intersections based on GPC-MFE lens, crosstalk levels are below -24dB and -18dB, and the average insertion losses are 0.60dB and 0.85dB in the C-band with lenses' radii of 7×a and 10×a, respectively, where a is the lattice constant of the photonic crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.