The present work addresses functional fatigue of binary NiTi and ternary NiTiCu (with 5, 7.5, and 10 at. pct Cu) shape memory (SM) spring actuators. We study how the alloy composition and processing affect the actuator stability during thermomechanical cycling. Spring lengths and temperatures were monitored and it was found that functional fatigue results in an accumulation of irreversible strain (in austenite and martensite) and in increasing martensite start temperatures. We present phenomenological equations that quantify both phenomena. We show that cyclic actuator stability can be improved by using precycling, subjecting the material to cold work, and adding copper. Adding copper is more attractive than cold work, because it improves cyclic stability without sacrificing the exploitable actuator stroke. Copper reduces the width of the thermal hysteresis and improves geometrical and thermal actuator stability, because it results in a better crystallographic compatibility between the parent and the product phase. There is a good correlation between the width of the thermal hysteresis and the intensity of irrecoverable deformation associated with thermomechanical cycling. We interpret this finding on the basis of a scenario in which dislocations are created during the phase transformations that remain in the microstructure during subsequent cycling. These dislocations facilitate the formation of martensite (increasing martensite start (M S ) temperatures) and account for the accumulation of irreversible strain in martensite and austenite.
Among the multifarious engineering applications of NiTi shape memory alloys (SMAs), their use in actuator applications stands out. In actuator applications, where the one-way effect (1WE) of NiTi SMAs is exploited, SM components are often applied as helical coil springs. Ingots are generally used as starting materials for the production of springs. But before SM actuator springs can be manufactured, the processing of appropriate wires from NiTi ingots poses a challenge because cold and hot working of NiTi SMAs strongly affect microstructure, and it is well known that the functional properties of NiTi SMAs are strongly dependent on their microstructure. The objective of the present paper is therefore to produce binary Ni 50 Ti 50 and ternary Ni 40 Ti 50 Cu 10 SMA actuator springs, starting from ingots produced by vacuum induction melting. From these ingots springs are produced using swaging, rolling, wire drawing and a shape-constraining procedure in combination with appropriate heat treatments. The evolution of microstructure during processing is characterized and the mechanical properties of the wires prior to spring-making are documented. The mechanical and functional characteristics of the wires are investigated in the stress-strain-temperature space. Finally, functional fatigue testing of actuator springs is briefly described and preliminary results for NiTi and NiTiCu actuator springs are reported.
The in-situ transmission electron microscopy technique allows direct observations of formation and growth of stress-induced martensite in pseudoelastic NiTi shape memory alloys. The present paper reports on the development of a miniature test procedure for in-situ straining experiments with specimens taken from small components. The deformation of an ultra-fine grained NiTi specimen is characterised by transmission electron microscopy (at early loading stages) and by optical microscopy (at larger strains). A complementary finite element analysis of the complex strain state in the specimen rationalises why the stress-induced martensitic transformation first occurs in the thin foil region of the specimen before spreading towards the outer rim of the specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.