Accurate and reliable interpolation of groundwater depth over a region is a pre-requisite for efficient planning and management of water resources. The performance of two deterministic, such as inverse distance weighting (IDW) and radial basis function (RBF) and two stochastic, i.e., ordinary kriging (OK) and universal kriging (UK) interpolation methods was compared to predict spatio-temporal variation of groundwater depth. Pre-and postmonsoon groundwater level data for the year 2006 from 110 different locations over Delhi were used. Analyses revealed that OK and UK methods outperformed the IDW method, and UK performed better than OK. RBF also performed better than IDW and OK. IDW and RBF methods slightly underestimated and both the kriging methods slightly overestimated the prediction of water table depth. OK, RBF and UK yielded 27.52, 27.66 and 51.11 % lower RMSE, 27.49, 35.34 and 51.28 % lower MRE, and 14.21, 16.12 and 21.36 % higher R 2 over IDW. The isodepth-area curves indicated the possibility of exploitation of groundwater up to a depth of 20 m.
Two non-parametric kriging methods such as indicator kriging and probability kriging were compared and used to estimate the probability of concentrations of Cu, Fe, and Mn higher than a threshold value in groundwater. In indicator kriging, experimental semivariogram values were fitted well in spherical model for Fe and Mn. Exponential model was found to be best for all the metals in probability kriging and for Cu in indicator kriging. The probability maps of all the metals exhibited an increasing risk of pollution over the entire study area. Probability kriging estimator incorporates the information about order relations which the indicator kriging does not, has improved the accuracy of estimating the probability of metal concentrations in groundwater being higher than a threshold value. Evaluation of these two spatial interpolation methods through mean error (ME), mean square error (MSE), kriged reduced mean error (KRME), and kriged reduced mean square error (KRMSE) showed 3.52% better performance of probability kriging over indicator kriging. The combined result of these two kriging method indicated that on an average 26.34%, 65.36%, and 99.55% area for Cu, Fe, and Mn, respectively, are coming under the risk zone with probability of exceedance from a cutoff value is 0.6 or more. The groundwater quality map pictorially represents groundwater zones as "desirable" or "undesirable" for drinking. Thus the geostatistical approach is very much helpful for the planners and decision makers to devise policy guidelines for efficient management of the groundwater resources so as to enhance groundwater recharge and minimize the pollution level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.