Sun tracking systems (STS) are one of the main components of large-scale photovoltaic (PV)-projects (PV farms) worldwide. PV farms comprise thousands of STS that are subjected to a number of high variable loads, e.g. the loading due to wind. It is also subjected to mechanical and aerodynamic cyclic stresses that can induce fatigue, thus shortening its lifetime. The main objective of this paper is to perform structural stress and fatigue analyses on the dual axis sun tracking system (azimuth-elevation) under selfweight and critical wind loading of 36 m/s (130km/h). Plain carbon steel is considered as the material structure. The static stress, damage distributions and fatigue life are obtained by means of Finite Element Analysis (FEA). FEA is carried out using the linear static approach. Fatigue analysis is performed using the Stress-Life method. Simulation results show that the stress resistance of the most fragile material is checked with a safety factor higher than 2 and the structure of the STS can withstand a maximum of 11.905 blocks (repeats) after the specified variable amplitude loading event before fatigue will become an issue. These evaluation results indicate that the sun tracking systems satisfy the design requirements of static strength and are safely within its designed fatigue life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.