BACKGROUND AND PURPOSETo investigate whether diabetes affects either or both nitric oxide (NO)-mediated and endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in endothelium-dependent relaxation of mesenteric arteries from streptozotocin-induced diabetic rats. EXPERIMENTAL APPROACHWire myography was employed to examine endothelial function of mesenteric arteries. Superoxide levels were measured by L-012 and lucigenin-enhanced chemiluminescence. Western blotting was used to quantify protein expression levels. KEY RESULTSSuperoxide levels were significantly increased in diabetic mesenteric arteries compared with normal arteries. Diabetes significantly reduced the sensitivity to the endothelium-dependent relaxant, acetylcholine (ACh) in mesenteric arteries. When the contribution of NO to relaxation was abolished by N-nitro-L-arginine (L-NNA) + a soluble guanylate cyclase inhibitor (ODQ), the sensitivity to ACh was significantly decreased in the diabetic arteries compared with normal arteries, indicating an impaired EDHF-type relaxation despite increased expression of intermediate-and small-conductance calcium-activated potassium channels. Conversely, when the contribution of EDHF was inhibited with TRAM-34 + apamin + iberiotoxin, maximum relaxations to ACh were significantly decreased in diabetic compared with normal arteries, suggesting that the contribution of NO was also impaired by diabetes. Basal levels of NO release, indicated by contraction to L-NNA, were also significantly decreased in diabetic arteries. Western blot analysis demonstrated that diabetic arteries had an increased expression of Nox2, decreased pSer 473 Akt and a reduced proportion of endothelial NO synthase (eNOS) expressed as a dimer, indicating uncoupling. CONCLUSION AND IMPLICATIONSThe contribution of both NO and EDHF-type relaxations was impaired in diabetes and was caused by increased oxidative stress, decreased pSer 473 Akt and/or eNOS uncoupling. AbbreviationsEDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.