Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10−17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10−17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α| 1.1 × 10 −8 quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives-Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.
Optical lattice clocks with uncertainty and instability in the 10 −17 -range and below have so far been demonstrated exclusively using fermions. Here, we demonstrate a bosonic optical lattice clock with 3 × 10 −18 instability and 2.0 × 10 −17 accuracy, both values improving on previous work by a factor 30. This was enabled by probing the clock transition with an ultra-long interrogation time of 4 s, using the long coherence time provided by a cryogenic silicon resonator, by careful stabilization of relevant operating parameters, and by operating at low atom density. This work demonstrates that bosonic clocks, in combination with highly coherent interrogation lasers, are suitable for highaccuracy applications with particular requirements, such as high reliability, transportability, operation in space, or suitability for particular fundamental physics topics. As an example, we determine the 88 Sr -87 Sr isotope shift with 12 mHz uncertainty.
Abstract-The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10 -15 at 1 s integration time and relative inaccuracy below 5×10 -17 . This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems -adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year.
We have demonstrated a direct frequency comparison between two 87 Sr lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique based on the carrier phase was employed for a direct comparison with a baseline of 9 000 km between Japan and Germany. A frequency comparison was achieved for 83 640 s resulting in a fractional difference of (1.1 ± 1.6) × 10 −15 , where the statistical part is the biggest contribution to the uncertainty. This measurement directly confirms the agreement of the two optical frequency standards on an intercontinental scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.