Background: Patients suffering from osteoarthritis undergo surgery to replace hip joints with hip prosthesis implants. Today most acetabular cups of hip prostheses are made of Ultra-High-Molecular-Weight-Polyethylene. However, these materials acting as acetabular cups of the implant have been recalled since patients have been feeling uncomfortable and abstained from physical activities. A newly introduced material, 30% Carbon Reinforced Polyetherketone, possess better isotropic mechanical properties and lower wear rates. Objective: The research aims to compare the von-Mises stresses and deformation in static and dynamic loading of Ultra-High Molecular-Weight-Polyethylene to 30% Reinforced Carbon Fiber Polyetherketone using Finite Element Analysis. Material and Methods: An analytical study was performed to evaluate material selection and their contact performances of acetabular cups. Four pairs have been analyzed under loading conditions following ASTM F2996-13 and ISO 7206-4 standards. The acetabular cups options are made of 30% Carbon Reinforced Fiber Polyetherketone or Ultra-High-Molecular-Weight-Polyethylene. Besides, the femoral head and steam options are either Alumina Ceramic or Cobalt Chrome Molybdenum. Results: The yield strength of Ultra-High-Molecular-Weight-Polyethylene is considerably small, resulting in the acetabular cup to fail when applied to high loading conditions. Carbon Reinforced Polyetherketone with Alumina Ceramic yielded 65% lower deformation at stumbling phase. Conclusion: Since the study focuses on linear isotropic material properties, Alumina Ceramic dominates a higher elastic modulus than Cobalt Chrome Molybdenum, nominating it the best fit combination for lower von-Mises stresses, acting on the Carbon Reinforced Polyetherketone acetabular cup.
Abstract:Owing to the large ratio of consumption in the building sector, energy saving strategies 17 are required. Energy feedback is an energy-saving strategy that consumers to change their energy- 26proposed strategy is implemented on two testbeds, and building diagnostics are performed 27 accordingly. For the first testbed, the predicted energy improvement amount resulting from the 28 facility upgrade is provided. The second testbed is provided with a 3D visualization of the energy 29 information. The aim is to determine if the building manager will replace the facility after our 30 recommendation is given to improve the building energy efficiency driven from the energy 31 information. Unlike existing systems, which provide only ambiguous data that lack quantitative 32 information, this study is meaningful because it provides energy information with the aid of 33 visualization effects before and after building improvements. 34
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.