Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CL(pro)) and a papain-like protease (PL(pro)) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (1-9) and four coumarins (10-13) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CL(pro) and PL(pro)) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CL(pro) and PL(pro) inhibitory activity with IC50 values of 11.4 and 1.2 µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CL(pro), whereas noncompetitive inhibition was observed with the SARS-CoV PL(pro).
SummaryThe active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2 DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein-protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2 DD expression by dexamethasone induced HR-like cell death in both T 1 and T 2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2-SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2-SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death.
Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus. The MAPK phosphorylates OsEREBP1 that binds to the GCC box element (AGCCGCC) of the several basic pathogenesis-related gene promoters, which in turn enhances DNA-binding activity of the factor to the cis element in vitro. Transient co-expression of the BWMK1 and OsEREBP1 in Arabidopsis protoplasts elevates the expression of the -glucuronidase reporter gene driven by the GCC box element. Furthermore, transgenic tobacco (Nicotiana tabacum) plants overexpressing BWMK1 expressed many pathogenesis-related genes at higher levels than wild-type plants with an enhanced resistance to pathogens. These findings suggest that MAPKs contribute to plant defense signal transduction by phosphorylating one or more transcription factors.Mitogen-activated protein kinase (MAPK) cascades are known to play essential roles in the signal transduction pathways involved in numerous eukaryotic cellular processes from cell division to cell death (Davis, 2000; Ligterink and Hirt, 2001). In the last few years, it has become apparent that MAPK cascades also play vital roles in signal transduction pathways of plants, including plant defense signaling (Innes, 2001; Tena et al., 2001; Zhang and Klessig, 2001). The Arabidopsis genome sequence has revealed the presence of 23 MAPK genes in the genome, which suggests that the MAPK cascades in plants may be quite complex.Accumulating lines of evidence indicate that plants rapidly activate MAPKs when exposed to a variety of abiotic and biotic stress stimuli (Ligterink et al., 1997; Zhang et al., 1998; Seo et al., 1999; Cardinale et al., 2000; Ichimura et al., 2000). These include pathogens, pathogen-derived elicitors, and defense-related second messengers. In tobacco (Nicotiana tabacum), two MAPKs, SIPK and WIPK, are activated by both various pathogen-related signals and diverse abiotic stresses, indicating that pathogen defense signaling is part of an integrated stress-signaling network in plants. Orthologs of SIPK and WIPK in Arabidopsis (AtMPK6 and AtMAPK3, respectively) and alfalfa (Medicago sativa; SIMK and SAMK, respectively) are also activated by both biotic and abiotic stresses (Seo et al., 1995; Zhang and Klessig, 1997; Nuhse et al., 2000). Recently, the MAPKK, NtMEK2, was identified to operate in the cascade upstream of SIPK and WIPK because a constitutively active NtMEK2 activates endogenous SIPK and WIPK molecules in transiently transformed tobacco cells. Furthermore, the constitutively active NtMEK2 induces hypersensitive cell death and the expression of defense genes (Yan...
Plants under stress from both biotic and abiotic sources produce increased levels of ethylene, which is perceived by ethylene receptors and triggers cellular responses further downstream. Protein phosphorylation and dephosphorylation were implicated in the regulation of ethylene induction by stresses based on studies using protein kinase and phosphatase inhibitors. However, the kinase(s) involved remains to be determined. Using a conditional gain-of-function transgenic system, we demonstrate that the activation of SIPK, a tobacco mitogen-activated protein kinase (MAPK), by NtMEK2 DD , an active mutant of the upstream kinase of SIPK, resulted in a dramatic increase in ethylene production. The increase in ethylene after the activation of SIPK coincided with a dramatic increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity, which was followed by the activation of a subgroup of ACS and ACC oxidase ( ACO ) genes, suggesting that either the activation of unidentified ACS (s) or post-transcriptional regulation is involved. Infection with Tobacco mosaic virus (TMV), which is known to activate the SIPK cascade and induce ethylene biosynthesis, also induced the same ACS s and ACO s. After ethylene production in NtMEK2 DD plants, strong activation of ETHYLENE-RESPONSE FACTOR ( ERF ) genes was observed, similar to the effect in NN tobacco plants infected with TMV. In contrast to previous reports, no major increase in jasmonic acid (JA) and methyl jasmonate (MJ) was detected after the activation of SIPK/WIPK in NtMEK2 DD transgenic plants. These results suggest that the induction of ethylene but not JA/MJ is involved in plant defense responses mediated by the NtMEK2-SIPK/WIPK pathway.
SummaryMitogen-activated protein kinase (MAPK) cascades are important signaling modules in eukaryotic cells that convert signals generated from the receptors/sensors to cellular responses. Upon activation, MAPKs can be translocated into nuclei where they phosphorylate transcription factors, which in turn activate gene expression. We recently identi®ed NtMEK2, a tobacco MAPK kinase, as the upstream kinase of SIPK and WIPK, two well-characterized tobacco stress-responsive MAPKs. In the conditional gain-of-function NtMEK2 DD transgenic tobacco plants, the activation of endogenous SIPK and WIPK by NtMEK2 DD induces several groups of defense genes, including 3-hydroxy-3-methlyglutaryl CoA reductase (HMGR), basic pathogenesis related (PR) genes, systemic acquired resistance gene 8.2 (Sar 8.2), and harpin-induced gene1 (Hin1). To identify the transcription factor(s) involved in the activation of these defense genes, we performed gel-mobility shift assays using nuclear extracts from NtMEK2 DD plants. Among the common cis-acting elements present in the promoters of defense-related genes, we observed a strong increase in the binding activity to the W box in nuclear extracts from the NtMEK2 DD plants but not the control NtMEK2 KR plants. The elevated W-boxbinding activity in the nuclear extracts cannot be reversed by phosphatase treatment, excluding the possibility of a direct phosphorylation regulation of WRKY transcription factors by SIPK/WIPK. Instead, we observed a rapid increase in the expression of several WRKY genes in the NtMEK2 DD plants. These results suggest that the increase in W-box-binding activity after SIPK/WIPK activation is a result of WRKY gene activation, and the NtMEK2±SIPK/WIPK cascade is involved in regulating the expression of genes ranging from transcription factors to defense genes further downstream during plant defense responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.