Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates.
Evaluation of the stability of drugs and drug metabolites in a biological matrix is a critical element to bioanalytical method validation. It is critical to understand the most common factors that affect the stability of such analytes in order to properly develop methods for their detection and measurement. The degradation of drugs and drug metabolites in samples can occur through either reversible or irreversible processes. Common factors that affect this stability include temperature, light, pH, oxidation and enzymatic degradation. Special considerations are also required when dealing with chiral molecules, deuterated internal standards and large biomolecules. Relevant examples of these degradation effects and approaches for dealing with them are presented is this review as taken from the fields of pharmaceutical testing, clinical research and forensic analysis. It is demonstrated through these examples how an understanding of the chemical and physical factors that affect sample stability can be used to avoid stability problems and to create robust and accurate methods for the analysis of drugs and related compounds.
Bisphosphonates are extremely hydrophilic and structurally similar to many endogenous phosphorylated compounds, making their selective extraction from serum or urine very challenging. Many bisphosphonates lack strong chromophores for sensitive UV or fluorescence detection. We report here the first general approach to enable sensitive and selective quantitation of N-containing bisphosphonates by liquid chromatography/tandem mass spectrometry (LC/MS/MS) following derivatization with diazomethane. The novelty of the strategy lies in performing the derivatization on silica-based anion-exchange sorbents as an integrated step in the sample purification by solid-phase extraction (SPE). The 'on-cartridge' reaction with diazomethane not only led to higher efficiency of derivatization, but also enabled a more discriminatory recovery of the drug's derivatives. The derivatized bisphosphonates demonstrated improved chromatographic separation and increased sensitivity of the detection. The general applicability of the approach was demonstrated by validation of bioanalytical methods for risedronate and alendronate in human serum and urine. Sensitivity was achieved at the pg/mL level with merely 100-200 microL of sample.
The 2016 10 Workshop on Recent Issues in Bioanalysis (10 WRIB) took place in Orlando, Florida with participation of close to 700 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis including Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS, and LBA approaches, with the focus on biomarkers and immunogenicity. This 2016 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. This white paper is published in 3 parts due to length. This part (Part 1) discusses the recommendations for small molecules, peptides and small molecule biomarkers by LCMS. Part 2 (Hybrid LBA/LCMS and regulatory inputs from major global health authorities) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in the Bioanalysis journal, issue 23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.