There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called "knee" around 3 × 10 15 eV and the so-called "ankle" around 10 18 eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10 15 and 10 18 eV, which we dub the "shin," have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. (2016) to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the galaxy. We argue for acceleration times on the order of 100 Myrs rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10 17 eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.
We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energyloading factors, galaxy mass and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass-loading and high energy-loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier & Clegg (1985) model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1 − 1000 M /yr assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity vs. SFR trend, further suggesting an inverse relationship between mass-loading and SFR as explored in advanced numerical simulations.
We characterize the Magellanic Corona model of the formation of the Magellanic Stream, which we introduced in Lucchini et al. (2020, 2021). Using high-resolution hydrodynamic simulations, we constrain the properties of the primordial Magellanic Clouds, including the Magellanic Corona -the gaseous halo around the Large Magellanic Cloud (LMC). With an LMC mass of 1.75 × 10 11 M ⊙ , a Magellanic Corona of > 5 × 10 9 M ⊙ at 3 × 10 5 K, a total Small Magellanic Cloud mass < 10 10 M ⊙ , and a Milky Way corona of 2 × 10 10 M ⊙ , we can reproduce the observed total mass of the neutral and ionized components of the Trailing Stream, ionization fractions along the Stream, morphology of the neutral gas, and on-sky extent of the ionized gas. The inclusion of advanced physical routines in the simulations allow the first direct comparison of a hydrodynamical model with UV absorption-line spectroscopic data. Our model reproduces O I, O VI, and C IV observations from HST/COS and FUSE. The stripped material is also nearby (< 50 kpc from the Sun), as found in our prior models including a Magellanic Corona.
In this paper, we build from previous work (Bustard et al. 2018) and present simulations of recent (within the past Gyr), magnetized, cosmic ray driven outflows from the Large Magellanic Cloud (LMC), including our first attempts to explicitly use the derived star formation history of the LMC to seed outflow generation. We run a parameter set of simulations for different LMC gas masses and cosmic ray transport treatments, and we make preliminary comparisons to published outflow flux estimates, neutral and ionized hydrogen observations, and Faraday rotation measure maps. We additionally report on the gas mass that becomes unbound from the LMC disk and swept by ram pressure into the Trailing Magellanic Stream. We find that, even for our largest outburst, the mass contribution to the Stream is still quite small, as much of the LMC halo gas is shielded on the LMCs far-side due to the LMCs primarily face-on infall through the Milky Way halo over the past Gyr. On the LMC's near-side, past outflows have fought an uphill battle against ram pressure, with near-side halo mass being at least a factor of a few smaller than the far-side. Absorption line studies probing only the LMC foreground, then, may be severely underestimating the total mass of the LMC halo formed by outflows. LMC-SMC tidal stripping, not modeled in our simulations, may be able to further expel this outflow gas into a trailing filament, however.
The bulk propagation speed of GeV-energy cosmic rays is limited by frequent scattering off hydromagnetic waves. Most galaxy evolution simulations that account for this confinement assume the gas is fully ionized and cosmic rays are well coupled to Alfvén waves; however, multiphase density inhomogeneities, frequently underresolved in galaxy evolution simulations, induce cosmic-ray collisions and ionization-dependent transport driven by cosmic-ray decoupling and elevated streaming speeds in partially neutral gas. How do cosmic rays navigate and influence such a medium, and can we constrain this transport with observations? In this paper, we simulate cosmic-ray fronts impinging upon idealized, partially neutral clouds and lognormally distributed clumps, with and without ionization-dependent transport. With these high-resolution simulations, we identify cloud interfaces as crucial regions where cosmic-ray fronts can develop a stairstep pressure gradient sufficient to collisionlessly generate waves, overcome ion–neutral damping, and exert a force on the cloud. We find that the acceleration of cold clouds is hindered by only a factor of a few when ionization-dependent transport is included, with additional dependencies on magnetic field strength and cloud dimensionality. We also probe how cosmic rays sample the background gas and quantify collisional losses. Hadronic gamma-ray emission maps are qualitatively different when ionization-dependent transport is included, but the overall luminosity varies by only a small factor, as the short cosmic-ray residence times in cold clouds are offset by the higher densities that cosmic rays sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.