The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as 'high-entropy alloys'. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3 CoCrCuFeNi model alloy. Here we show that, even when the material undergoes elemental segregation, precipitation, chemical ordering and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. The results suggest that the high-entropy alloy-design strategy may be applied to a wide range of complex materials, and should not be limited to the goal of creating single-phase solid solutions.
In this paper we discuss the effect of background pressure and synthesis temperature on the graphene crystal sizes in chemical vapor deposition (CVD) on copper catalyst. For the first time, we quantitatively demonstrate a fundamental role of the background pressure and provide the activation energy for graphene nucleation in atmospheric pressure CVD (9 eV), which is substantially higher than for low pressure CVD (4 eV). We attribute the difference to a greater importance of copper sublimation in low pressure CVD, where severe copper evaporation likely dictates the desorption rate of active carbon from the surface. At atmospheric pressure, where copper evaporation is suppressed, the activation energy is assigned to the desorption energy of carbon clusters instead. The highest possible temperature, close to the melting point of copper, should be used for large single crystal graphene synthesis. Using these conditions, we have synthesized graphene single crystals approaching 1 mm in size. Single crystal nature of synthesized graphene was confirmed by low energy electron diffraction. We also demonstrate that CVD of graphene at temperatures below 1000 oC shows higher nucleation density on (111) than on (100) and (101) copper surfaces but there is no identifiable preference at higher temperatures.
Growth and microstructure of a protective or nonprotective SiO2 scale and the subsequent volatilization of scale formed on high‐purity chemical vapor deposited (CVD) SiC and nuclear‐grade SiC/SiC composites have been studied during high‐temperature 100% steam exposure. The environmental parameters of interest were temperature from 1200°C to 1700°C, pressure of 0.1 to 2 MPa and flow velocities of 0.23 to 145 cm/s. Scale microstructure was characterized via electron microscopy and X‐ray diffractometry. The Arrhenius dependence of the parabolic oxidation and linear volatilization rate constants were determined. The linear volatilization rate exhibited a strong dependence on steam partial pressure with a weaker dependence on flow velocity. At high steam pressures, the oxide scale developed substantial porosity, which significantly accelerated material recession. The dominant oxide phase for the conditions studied was cristobalite. The oxidation behavior of SiC/SiC composite was strongly dependent on the state of the surface, specifically whether steam could find easy entry into the material via surface‐exposed interface layers. For the case where these as‐machined interfaces were surface coated with matrix CVD SiC, composite recession was found to be essentially that of high‐purity CVD SiC.
Plasmonics is a rapidly growing field, yet imaging of the plasmonic modes in complex nanoscale architectures is extremely challenging. Here we obtain spatial maps of the localized surface plasmon modes of high-aspect-ratio silver nanorods using electron energy loss spectroscopy (EELS) and correlate to optical data and classical electrodynamics calculations from the exact same particles. EELS mapping is thus demonstrated to be an invaluable technique for elucidating complex and overlapping plasmon modes.
Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at.% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~ 70% at 77 K and ~ 40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.