The attachment of inert polymers, such as polyethylene glycol, to proteins has driven the emergence of a multibillion dollar biotechnology industry. In all cases, proteins have been stabilized or altered by covalently coupling the pre-existing polymer to the surface of the protein. This approach is inherently limited by a lack of exquisite control of polymer architecture, site and density of attachment. Using a novel water-soluble atom transfer radical polymerization initiator, we have grown temperature- and pH-responsive polymers from the surface of a model protein, the enzyme chymotrypsin. Poly(2-(dimethylamino)ethyl methacrylate) changes in conformation with altered temperature and pH. Growing the polymer from the surface of chymotrypsin we were able to demonstrate that changes in temperature or pH can change predictably the conformation of the polymer surrounding the enzyme, which in turn enabled the rational tailoring of enzyme activity and stability. Using what we now term "Polymer-Based Protein Engineering", we have increased the activity and stability of chymotrypsin by an order of magnitude at pHs where the enzyme is usually inactive or unstable.
Membraneless organelles, like membrane-bound organelles, are essential to cell homeostasis and provide discrete cellular subcompartments. Unlike classical organelles, membraneless organelles possess no physical barrier but rather arise by phase separation of the organelle components from the surrounding cytoplasm or nucleoplasm. Complex coacervation, the liquid-liquid phase separation of oppositely charged polyelectrolytes, is one of several phenomena that are hypothesized to drive the formation and regulation of some membraneless organelles. Studies of the molecular properties of globular proteins that drive complex coacervation are limited as many proteins do not form complexes with oppositely charged macromolecules at neutral pH and moderate ionic strengths. Protein supercharging overcomes this problem and drives complexation with oppositely charged macromolecules. In this work, several distinct cationic supercharged green fluorescent protein (GFP) variants were designed to examine the phase behavior with oppositely charged polyanionic macromolecules. Cationic GFP variants phase separated with oppositely charged macromolecules at various mixing ratios, salt concentrations, and pH values. Efficient protein incorporation in the macromolecule rich phase occurred over a range of protein and polymer mass fractions, but the protein encapsulation efficiency was highest at the midpoint of the phase separation regime. More positively charged proteins phase separated over broader pH and salt ranges than those of proteins with a lower charge density. Interestingly, each GFP variant phase separated at higher salt concentrations with anionic synthetic macromolecules compared to anionic biological macromolecules. Optical microscopy revealed that most variants, depending on solution conditions, formed liquid-liquid phase separations, except for GFP/DNA pairs that formed solid aggregates under all tested conditions.
In this study, we report on multimodal temperature-responsive chymotrypsin-poly(sulfobetaine methacrylamide)-block-poly(N-isopropylacrylamide) (CT-pSBAm-block-pNIPAm) protein-polymer conjugates. Using polymer-based protein engineering (PBPE) with aqueous atom transfer radical polymerization (ATRP), we synthesized three different molecular weight CT-pSBAm-block-pNIPAm bioconjugates that responded structurally to both low and high temperature. In the block copolymer grown from the surface of the enzyme, upper critical solution temperature (UCST) phase transition was dependent on the chain length of the polymers in the conjugates, whereas lower critical solution temperature (LCST) phase transition was independent of molecular weight. Each CT-pSBAm-block-pNIPAm conjugate showed temperature dependent changes in substrate affinity and productivity when assayed from 0 to 40 °C. In addition, these conjugates showed higher stability to harsh conditions, including temperature, low pH, and protease degradation. Indeed, the PBPE-modified enzyme was active for over 8 h in the presence of a stomach protease at pH 1.0. Using PBPE, we created a dual zone shell surrounding each molecule of enzyme. The thickness of each zone of the shell was engineered to be separately responsive to temperature.
The reduced immunogenicity and increased stability of protein-polymer conjugates has made their use in therapeutic applications particularly attractive. However, the physicochemical interactions between polymer and protein, as well as the effect of this interaction on protein activity and stability, are still not fully understood. In this work, polymer-based protein engineering was used to examine the role of polymer physicochemical properties on the activity and stability of the chymotrypsin-polymer conjugates and their degree of binding to intestinal mucin. Four different chymotrypsin-polymer conjugates, each with the same polymer density, were synthesized using "grafting-from" atom transfer radical polymerization. The influence of polymer charge on chymotrypsin-polymer conjugate mucin binding, bioactivity, and stability in stomach acid was determined. Cationic polymers covalently attached to chymotrypsin showed high mucin binding, while zwitterionic, uncharged, and anionic polymers showed no mucin binding. Cationic polymers also increased chymotrypsin activity from pH 6-8, while zwitterionic polymers had no effect, and uncharged and anionic polymers decreased enzyme activity. Lastly, cationic polymers decreased the tendency of chymotrypsin to structurally unfold at extremely low pH, while uncharged and anionic polymers induced unfolding more quickly. We hypothesized that when polymers are covalently attached to the surface of a protein, the degree to which those polymers interact with the protein surface is the predominant determinant of whether the polymer will stabilize or inactivate the protein. Preferential interactions between the polymer and the protein lead to removal of water from the surface of the protein, and this, we believe, inactivates the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.