Staphylococcus epidermidis (SE) causes late onset sepsis and significant morbidity in catheterized preterm newborns. Animal models of SE infection are useful in characterizing disease mechanisms and are an important approach to developing improved diagnostics and therapeutics. Current murine models of neonatal bacterial infection employ intraperitoneal or subcutaneous routes at several days of age, and may, therefore, not accurately reflect distinct features of innate immune responses to bacteremia. In this study we developed, validated, and characterized a murine model of intravenous (IV) infection in neonatal mice <24 hours (h) old to describe the early innate immune response to SE. C57BL/6 mice <24 h old were injected IV with 106, 107, 108 colony-forming units (CFU) of SE 1457, a clinical isolate from a central catheter infection. A prospective injection scoring system was developed and validated, with only high quality injections analyzed. Newborn mice were euthanized between 2 and 48 h post-injection and spleen, liver, and blood collected to assess bacterial viability, gene expression, and cytokine production. High quality IV injections demonstrated inoculum-dependent infection of spleen, liver and blood. Within 2 h of injection, SE induced selective transcription of TLR2 and MyD88 in the liver, and increased systemic production of plasma IL-6 and TNF-α. Despite clearance of bacteremia and solid organ infection within 48 h, inoculum-dependent impairment in weight gain was noted. We conclude that a model of IV SE infection in neonatal mice <24 h old is feasible, demonstrating inoculum-dependent infection of solid organs and a pattern of bacteremia, rapid and selective innate immune activation, and impairment of weight gain typical of infected human neonates. This novel model can now be used to characterize immune ontogeny, evaluate infection biomarkers, and assess preventative and therapeutic modalities.
Understanding spatial distribution and dynamics of receptors within unperturbed membranes is essential for elucidating their role in antiviral signaling, but conventional studies of detergent-resistant membrane fractions cannot provide this information. Caveolae are integral to numerous signaling pathways and these membrane domains have been previously implicated in viral entry but not antiviral defense. This study shows, for the first time, the importance of spatio-temporal regulation of signaling receptors and the importance of the regulation of clustering for downstream signaling. A novel mechanism for virus evasion of host cell defenses is demonstrated through disruption of clusters of signaling molecules organized within caveolin-rich domains. Viral infection leads to a downregulation in Caveolin-1b (Cav-1b), disrupting clusters of CRFB1, a zebrafish type I interferon receptor (–R) subunit. Super-resolution microscopy has enabled the first single-molecule imaging of CRFB1 association with cav-1b-containing membrane domains. Strikingly, downregulation of Cav-1b, the major protein component of caveolae, caused CRFB1 clusters to disperse. Dispersal of CRFB1 clusters led to a suppressed antiviral immune response both in vitro and in vivo, through abrogation of downstream signaling. This response strongly suggests that CRFB1 organization within cav-1b-containing membrane domains is critical for IFN-mediated antiviral defense and presents a previously undescribed antiviral evasion strategy to alter IFN signaling and the antiviral immune response.
Purpose: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy. Experimental Design: PF-07062119 activity was evaluated in vitro in multiple tumor cell lines, and in vivo in established subcutaneous and orthotopic human colorectal cancer xenograft tumors with adoptive transfer of human T cells. Efficacy was also evaluated in mouse syngeneic tumors using human CD3e transgenic mice. IHC and mass cytometry were performed to demonstrate drug biodistribution, recruitment of activated T cells, and to identify markers of immune evasion. Combination studies were performed with anti-PD-1/PD-L1 and anti-VEGF antibodies. Toxicity and pharmacokinetic studies were done in cynomolgus macaque. Results: We demonstrate that GUCY2C-positive tumors can be targeted with an anti-GUCY2C/anti-CD3e bispecific, with selective drug biodistribution to tumors. PF-07062119 showed potent T-cell-mediated in vitro activity and in vivo efficacy in multiple colorectal cancer human xenograft tumor models, including KRASand BRAF-mutant tumors, as well as in the immunocompetent mouse syngeneic tumor model. PF-07062119 activity was further enhanced when combined with anti-PD-1/ PD-L1 treatment or in combination with antiangiogenic therapy. Toxicity studies in cynomolgus indicated a monitorable and manageable toxicity profile. Conclusions: These data highlight the potential for PF-07062119 to demonstrate efficacy and improve patient outcomes in colorectal cancer and other gastrointestinal malignancies.
Current vaccine development disregards human immune ontogeny, relying on animal models to select vaccine candidates targeting human infants, who are at greatest risk of infection worldwide, and receive the largest number of vaccines. To help accelerate and de-risk development of early-life effective immunization, we engineered a human age-specific microphysiologic vascular-interstitial interphase, suitable for pre-clinical modeling of distinct age-targeted immunity in vitro. Our Tissue Constructs (TCs) enable autonomous extravasation of monocytes that undergo rapid self-directed differentiation into migratory Dendritic Cells (DCs) in response to adjuvants and licensed vaccines such as Bacille Calmette-Guérin (BCG) or Hepatitis B virus Vaccine (HBV). TCs contain a confluent human endothelium grown atop a tri-dimensional human extracellular matrix substrate, employ human age-specific monocytes and autologous non heat-treated plasma, and avoid the use of xenogenic materials and exogenous cytokines. Vaccine-pulsed TCs autonomously generated DCs that induced single-antigen recall responses from autologous naïve and memory CD4+ T lymphocytes, matching study participant immune-status, including BCG responses paralleling donor PPD status, BCG-induced adenosine deaminase (ADA) activity paralleling infant cohorts in vivo, and multi-dose HBV antigen-specific responses as demonstrated by lymphoproliferation and TCR sequencing. Overall, our microphysiologic culture method reproduced age- and antigen-specific recall responses to BCG and HBV immunization, closely resembling those observed after a birth immunization of human cohorts in vivo, offering for the first time a new approach to early pre-clinical selection of effective age-targeted vaccine candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.