Tension-compression asymmetry in Mg-8Al-0.5Zn alloys has been studied as a function of precipitation state. It has been shown that the presence of precipitates significantly reduces yield asymmetry compared with solution treated material. This reduction in asymmetry was attributed to reduced rates of twinning in the presence of Mg 17 Al 12 precipitates. This has been confirmed by texture and microstructure analyses, which show a reduction in the scale and volume fraction of twins in aged and solution treated samples examined at equivalent levels of strain.
Metal nanowires are twisted to form yarns that are strong (0.4 to 1.1 GPa), pliable, and more conductive (3 × 106 S m−1) than carbon nanotube yarns. Niobium nanowire fibers are extracted by etching a copper‐niobium nano‐composite material fabricated using the severe plastic deformation process. When impregnated with paraffin wax, the niobium (Nb) nanowire yarns produce fast rotational actuation as the wax is heated. The heated wax expands, untwisting the yarn, which then re‐twists upon cooling. Normalized to yarn length, 12 deg mm−1 of torsional rotation was achieved along with twist rates in excess of 1800 rpm. Tensile modulus of 19 ± 5 GPa was measured for the Nb yarns, which is very similar to those of carbon multiwalled nanotubes.
Recent experimental studies have reported improved combinations of strength and uniform elongation in ultrafine-grained polycrystals with bi-modal grain size distributions. Despite these results, the extent to which the grain size distribution affects macroscopic tensile response, particularly at large strains, is unclear. This issue is examined here for polycrystals with varying grain sizes and grain size distributions using a grain size dependent constitutive model within the viscoplastic self-consistent formalism. The evolution of the macroscopic and grain-level stresses and strains has been monitored as a function of the width and mean of the grain size distribution. As an example of highly heterogeneous structures, the stress–strain response of a number of bi-modal microstructures have been examined and compared with their uni-modal counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.