Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) are two core electrochemical processes involved in hydrogen fuel cell (HFC) technology. ORR is a cathodic reaction occurring in HFC, whereas HER can convert the H2O byproduct from HFCs into H2 gas via water splitting. Platinum (Pt)-based catalysts are the most effective catalysts for both reactions. In this work, we used a fast, facile, and chemical-free method, called solution plasma sputtering (SPS), to synthesize Pt nanoparticles supported on Ketjen Black (KB). The discharge time was varied (5, 10, and 20 min) to alter the Pt loading. Characterization results revealed that the plasma did not affect the morphology of KB, and the Pt loading on KB increased with increasing discharge time (5.5–17.9 wt%). Well-crystallized Pt nanoparticles, ~2–5 nm in diameter, were obtained. Electrochemical measurements revealed that Pt/KB exhibited bifunctional catalytic activity toward HER and ORR in 0.5 M H2SO4 solution. Both HER and ORR activities enhanced as the loading of Pt nanoparticles increased with a longer discharge time. Moreover, Pt/KB exhibited better HER and ORR stability than a commercial Pt-based catalyst, which was attributed to the stronger adhesion between Pt nanoparticles and KB support. Thus, SPS can be applied as an alternative synthesis method for preparing Pt/KB catalysts for HER and ORR.
This work shows the potential utilization of horse manure as a precursor for synthesizing nitrogen-doped carbons for electrocatalytic oxygen reduction reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.