Transformer-based language models achieve state-of-the-art results on several natural language processing tasks. One of these is textual entailment, i.e., the task of determining whether a premise logically entails a hypothesis. However, the models perform poorly on this task when the examples contain negations. In this paper, we propose a new definition of textual entailment that captures also negation. This allows us to develop TINA (Textual Inference with Negation Augmentation), a principled technique for negated data augmentation that can be combined with the unlikelihood loss function. Our experiments with different transformer-based models show that our method can significantly improve the performance of the models on textual entailment datasets with negation -without sacrificing performance on datasets without negation.
Logical reasoning on natural language is one of the most challenging tasks for deep learning models. There has been an increasing interest in developing new benchmarks to evaluate the reasoning capabilities of language models such as BERT. In parallel, new models based on transformers have emerged to achieve ever better performance on these datasets. However, there is currently no library for logical reasoning that includes such benchmarks and models. This paper introduces LogiTorch, a PyTorchbased library that includes different logical reasoning benchmarks, different models, as well as utility functions such as co-reference resolution. This makes it easy to directly use the preprocessed datasets, to run the models, or to finetune them with different hyperparameters. LogiTorch is open source and can be found on GitHub 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.