The development of congestive heart failure (CHF) is associated with left ventricular (LV) dilation and myocardial remodeling. However, fundamental mechanisms that contribute to this remodeling process with the progression of CHF remain unclear. The matrix metalloproteinases (MMPs) have been demonstrated to play a significant role in tissue remodeling in a number of pathological processes. The present project tested the hypothesis that the LV dilation and remodeling during the progression of CHF is associated with early changes in MMP expression and zymographic activity. LV and myocyte function, collagen content, and MMP expression and zymographic activity were serially measured during the progression of CHF caused by pacing-induced supraventricular tachycardia (SVT) in pigs. After 7 days of SVT, LV end-diastolic dimension and myocyte length both increased by 15% from control values, and LV fractional shortening fell by 20%. At the level of the myocyte, percent shortening fell by 16% after 7 days of SVT, with no change in the steady-state velocity of shortening. Longer durations of SVT caused progressive LV dilation, LV pump failure, and myocyte contractile dysfunction. Specifically, 21 days of SVT resulted in a >50% increase in LV dimension, a 56% fall in LV fractional shortening, and a 33% decline in myocyte velocity of shortening. The decline in LV and myocyte function with 21 days of SVT was accompanied by signs and symptoms of CHF. Thus, SVT causes time-dependent changes in LV geometry and function and the subsequent development of CHF. LV myocardial collagen content and confluence fell by >25% after 7 days of SVT and were accompanied by an 80% increase in LV myocardial MMP zymographic activity against the substrate gelatin. After 14 days of SVT, total LV myocardial collagen content was reduced by 24%, and LV myocardial MMP zymographic activity increased by >100% from control values. Interstitial collagenase (MMP-1), stromelysin (MMP-3), and 72-kD gelatinase (MMP-2) were increased by approximately 2-fold after 7 days of SVT. LV MMP zymographic activity and abundance remained elevated with longer durations of SVT. The results of the present study demonstrated that in this model of CHF, early changes in LV myocardial MMP zymographic activity and protein levels occurred with the initiation and progression of LV dilation and dysfunction. These findings suggest that an early contributory mechanism for the initiation of LV remodeling that occurred in this model of developing CHF is enhanced expression and potentially increased activity of LV myocardial MMPs.
Background-One of the hallmarks of dilated cardiomyopathy (DCM) is left ventricular (LV) remodeling. The matrix metalloproteinases (MMPs) are a family of enzymes that contribute to extracellular remodeling in several disease states. Additionally, a family of inhibitors called tissue inhibitors of MMPs (TIMPs) has been shown to exist and to tightly regulate MMP activity. However, the types of MMPs and TIMPs expressed within the normal and DCM LV myocardium and the relation to MMP activity remain unexplored. Methods and Results-Relative LV myocardial MMP activity was determined in the normal (nϭ8) and idiopathic DCM (nϭ7) human LV myocardium by substrate zymography. Relative LV myocardial abundance of interstitial collagenase (MMP-1), stromelysin (MMP-3), 72 kD gelatinase (MMP-2), 92 kD gelatinase (MMP-9), TIMP-1, and TIMP-2 were measured with quantitative immunoblotting. LV myocardial MMP zymographic activity increased with DCM compared with normal (984Ϯ149 versus 413Ϯ64 pixels, PϽ.05). With DCM, LV myocardial abundance of MMP-1 decreased to 16Ϯ6% (PϽ.05), MMP-3 increased to 563Ϯ212% (PϽ.05), MMP-9 increased to 422Ϯ64% (PϽ.05), and MMP-2 was unchanged when compared with normal. LV myocardial abundance of TIMP-1 and TIMP-2 increased by Ͼ500% with DCM. A high-molecular-weight immunoreactive band for both TIMP-1 and TIMP-2, suggesting a TIMP/MMP complex, was increased Ͼ600% with DCM. Conclusions-This study demonstrated increased LV myocardial MMP activity and evidence for independent regulatory mechanisms of MMP and TIMP expression with DCM. These findings suggest that selective inhibition of MMP species within the LV myocardium may provide a novel therapeutic target in patients with DCM.
The left ventricular (LV) myocardial collagen matrix has been proposed to participate in the maintenance of LV geometry. Thus alterations in the composition of the LV myocardial collagen matrix may influence LV function. The matrix metalloproteinases (MMPs) are a family of enzymes that contribute to extracellular remodeling in several disease states. However, the types of MMPs expressed in the normal and congestive heart failure (CHF) state and the relation to MMP activity remained unclear. Accordingly, after 3 wk of pacing (240 beats/min), changes in LV function, substrate-specific MMP activity, and MMP subclass abundance were measured in comparison with control pigs ( n = 6). Changes in LV function and geometry were measured by echocardiography; LV end-diastolic dimension increased (3.6 ± 0.1 vs. 6.0 ± 0.1 cm, P < 0.05) and LV fractional shortening decreased (47 ± 1 vs. 15 ± 1%, P < 0.05) compared with controls. Degradation of fibrillar collagen is achieved through the combined action of interstitial collagenase (MMP-1), gelatinase A (MMP-2), and stromelysin (MMP-3) (He, C., S. Wilheilm, A. Pentland, B. Marmer, G. Grant, A. Eisen, and G. Goldberg. Proc. Natl. Acad. Sci. USA 86: 2632–2636, 1989; Woessner, J. FASEB J. 5: 2145–2154, 1991). Accordingly, the relative abundance of specific MMPs (MMP-1, MMP-2, and MMP-3) was examined by immunoblotting. With pacing CHF, the relative abundance for MMP-1 increased to 319 ± 94%, MMP-2 increased to 194 ± 31%, and MMP-3 increased to 493 ± 159% (all P < 0.05). With pacing CHF, LV myocardial zymographic activity for the substrate gelatin increased by 119% ( P < 0.05) and for the substrate collagen III by 153% ( P < 0.05) over controls. Caseinolytic activity also increased with pacing CHF by 139% ( P < 0.05) over controls. In conclusion, LV myocardial MMP activity and abundance increased with pacing-induced CHF. These findings demonstrate that pacing-induced CHF leads to changes in myocardial MMP activity and expression that may be responsible for LV remodeling in CHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.