In January 2014, the US government temporarily designated 5F-PB-22, along with three other synthetic cannabinoids (AB-FUBINACA, ADB-PINACA and PB-22), into Schedule I. Over the course of a 4-month time period (July-October 2013), our laboratory quantitatively identified 5F-PB-22 in specimens obtained from four postmortem cases. We describe the four cases, to include pertinent autopsy findings and decedent histories, together with quantitative results for 5F-PB-22 determined in postmortem blood and antemortem serum. Samples were prepared via a liquid-liquid extraction at pH 10.2 into hexane : ethyl acetate. Instrumental analysis was achieved with liquid chromatography coupled with electrospray ionization tandem mass spectrometry operating in multiple reaction monitoring mode. Two ion transitions were monitored for the analyte of interest, and one ion transition was monitored for the internal standard. The observed concentration range of 5F-PB-22 is 1.1-1.5 ng/mL for three postmortem blood specimens and one antemortem serum specimen. Three of the decedents experienced abrupt, sudden death; however, one decedent expired after a rapidly deteriorating hospital course.
Immune reactivity to self-antigens in both cancer and autoimmune diseases can be enhanced by systemic immune modulation, posing a challenge in cancer immunotherapy. To distinguish the genetic and immune regulation of tumor immunity versus autoimmunity, immune responses to human ErbB-2 (Her-2) and mouse thyroglobulin (mTg) were tested in transgenic mice expressing Her-2 that is overexpressed in several cancers, and HLA-DRB1*0301 (DR3) that is associated with susceptibility to several human autoimmune diseases, as well as experimental autoimmune thyroiditis (EAT). To induce Her-2 response, mice were electrovaccinated with pE2TM and pGM-CSF encoding the extracellular and transmembrane domains of Her-2 and the murine granulocyte macrophage colony-stimulating factor, respectively. To induce EAT, mice received mTg i.v. with or without lipopolysaccharide. Depletion of regulatory T cells (Treg) with anti-CD25 monoclonal antibody enhanced immune reactivity to Her-2 as well as mTg, showing control of both Her-2 and mTg responses by Treg. When immunized with mTg, Her-2xDR3 and B6xDR3 mice expressing H2 b xDR3 haplotype developed more profound mTg response and thyroid pathology than Her-2 or B6 mice that expressed the EAT-resistant H2 b haplotype. In Her-2xDR3 mice, the response to mTg was further amplified when mice were also immunized with pE2TM and pGM-CSF. On the contrary, Her-2 reactivity was comparable whether mice expressed DR3 or not. Therefore, induction of Her-2 immunity was independent of DR3 but development of EAT was dictated by this allele, whereas Tregs control the responses to both self-antigens. These results warrant close monitoring of autoimmunity during cancer immunotherapy, particularly in patients with susceptible MHC class II alleles. [Cancer Res 2007;67(14):7020-7]
Summary We have examined the induction of autoimmunity and the maintenance of sustained hyperthyroidism in autoimmunity‐prone human leucocyte antigen (HLA) DR3 transgenic non‐obese diabetic (NOD) mice following chronic stimulation of the thyrotropin receptor (TSHR) by monoclonal thyroid‐stimulating autoantibodies (TSAbs). Animals received weekly injections over the course of 9 weeks of monoclonal antibodies (mAbs) with strong thyroid‐stimulating properties. Administration of the mAbs KSAb1 (IgG2b) or KSAb2 (IgG2a), which have similar stimulating properties but different TSH‐binding blocking activity, resulted in significantly elevated serum thyroxine (T4) levels and thyroid hyperplasia. After the first injection, an initial surge then fall in serum T4 levels was followed by sustained elevated levels with subsequent injections for at least 63 days. Examination of KSAb1 and KSAb2 serum bioactivity showed that the accumulation of the TSAbs in serum was related to their subclass half‐lives. The thyroid glands were enlarged and histological examination showed hyperplastic follicles, with minimal accompanying thyroid inflammation. Our results show that chronic in vivo administration of mAbs with strong thyroid‐stimulating activity resulted in elevated T4 levels, suggesting persistent stimulation without receptor desensitization, giving a potential explanation for the sustained hyperthyroid status in patients with Graves' disease. Moreover, despite the presence of HLA disease susceptibility alleles and the autoimmune prone NOD background genes, chronic stimulation of the thyroid gland did not lead to immune cell‐mediated follicular destruction, suggesting the persistence of immunoregulatory influences to suppress autoimmunity.
Both genetic and environmental factors contribute to autoimmune disease development. Previously, we evaluated genetic factors in a humanized mouse model of Hashimoto's thyroiditis (HT) by immunizing human leucocyte antigen DR3 (HLA-DR3) and HLA-DQ8 transgenic class II-knock-out non-obese diabetic (NOD) mice. DR3+ mice were susceptible to experimental autoimmune thyroiditis (EAT) induction by both mouse thyroglobulin (mTg) and human (h) Tg, while DQ8+ mice were weakly susceptible only to hTg. As one environmental factor associated with HT and tested in non-transgenic models is increased sodium iodide (NaI) intake, we examined the susceptibility of DR3+ and/or DQ8+ mice to NaI-induced disease. Mice were treated for 8 weeks with NaI in the drinking water. At 0 x 05% NaI, 23% of DR3+, 0% of DQ8+ and 20% of DR3+DQ8+ mice had thyroid destruction. No spleen cell proliferation to mTg was observed. Most mice had undetectable anti-mTg antibodies, but those with low antibody levels usually had thyroiditis. At 0.3% NaI, a higher percentage of DR3+ and DR3+DQ8+ mice developed destructive thyroiditis, but it was not statistically significant. However, when DR3+ mice had been depleted of CD4+CD25+ regulatory T cells prior to NaI treatment, destructive thyroiditis (68%) and serum anti-mTg antibodies were exacerbated further. The presence of DQ8 molecules does not alter the susceptibility of DR3+DQ8+ mice to NaI-induced thyroiditis, similar to earlier findings with mTg-induced EAT. Susceptibility of DR3+ mice to NaI-induced EAT, in both the presence and absence of regulatory T cells, demonstrates the usefulness of HLA class II transgenic mice in evaluating the roles of environmental factors and immune dysregulation in autoimmune thyroid disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.