BackgroundOne of the characteristics of spinal stenosis is elastin degradation and fibrosis of the extracellular matrix of the ligamentum flavum. However, there have been no investigations to determine which biochemical factors cause these histologic changes. So we performed the current study to investigate the hypothesis that matrix metalloproteinases (MMPs), which possess the ability to cause extracellular matrix remodeling, may play a role as a mediator for this malady in the ligamentum flavum.MethodsThe ligamentum flavum specimens were surgically obtained from thirty patients with spinal stenosis, as well as from 30 control patients with a disc herniation. The extents of ligamentum flavum elastin degradation and fibrosis were graded (grade 0-4) with performing hematoxylin-eosin staining and Masson's trichrome staining, respectively. The localization of MMP-2 (gelatinase), MMP-3 (stromelysin) and MMP-13 (collagenase) within the ligamentum flavum tissue was determined by immunohistochemistry. The expressions of the active forms of MMP-2, MMP-3 and MMP-13 were determined by western blot analysis, and the blots were quantified using an imaging densitometer. The histologic and biochemical results were compared between the two conditions.ResultsElastin degradation and fibrosis of the ligamentum flavum were significantly more severe in the spinal stenosis samples than that in the disc herniation samples (3.14 ± 0.50 vs. 0.55 ± 0.60, p < 0.001; 3.10 ± 0.57 vs. 0.76 ± 0.52, p < 0.001, respectively). The expressions of the active form of MMPs were identified in all the ligamentum flavums of the spinal stenosis and disc herniation patients. The expressions of active MMP-2 and MMP-13 were significantly higher in the spinal stenosis samples than that in the disc herniation samples (both p < 0.05). The expression of active MMP-3 was slightly higher in the spinal stenosis samples than that in the disc herniation samples, but the difference was not statistically significant (p = 0.131). MMP-2, -3, and -13 were positively stained on the ligamentum flavum fibroblasts.ConclusionsThe current results suggest that the increased expression of active MMPs by the ligamentum flavum fibroblasts might be related to the elastin degradation and fibrosis of the ligamentum flavum in the patients who suffer with lumbar spinal stenosis.
Study DesignIn vitro cell culture.PurposeThe purpose of this study was to investigate the effect of high glucose on autophagy in adult rat intervertebral disc cells.Overview of LiteratureDiabetes mellitus is considered to be an important etiologic factor for intervertebral disc degeneration, resulting in degenerative disc diseases. A glucose-mediated increase of autophagy is a major causative factor for the development of diseases associated with diabetes mellitus. However, no information is available for the effect of high glucose on autophagy in adult intervertebral disc cells.MethodsNucleus pulposus and annulus fibrosus cells were isolated from 24-week-old adult rats, cultured and placed in either 10% fetal bovine serum (normal control) or 10% fetal bovine serum plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days, respectively. The expressions of autophagy markers, such as beclin-1, light chain 3-I (LC3-I) and LC3-II, autophagy-related gene (Atg) 3, 5, 7 and 12, were identified and quantified.ResultsTwo high glucoses significantly increased the expressions of beclin-1, LC3-II, Atg3, 5, 7, and 12 in adult rat nucleus pulposus and annulus fibrosus cells in a dose- and time-dependent manner. The ratio of LC3-II/LC3-I expression was also increased in a dose-respectively time-dependent manner.ConclusionsThe results suggest that autophagy of adult nucleus pulposus and annulus fibrosus cells might be a potential mechanism for the intervertebral disc degeneration in adult patients with diabetes mellitus. Thus, the prevention of autophagy in adult intervertebral disc cells might be considered as a novel therapeutic target to prevent or to delay the intervertebral disc degeneration in adult patients with diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.