Background Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as autism spectrum disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation. Methods We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice, a standard mouse model of ASD. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various postnatal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels. Results AD-like changes in ceramide content occurred by day one postpartum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with early appearance of cytokine markers (i.e., interleukin [IL]-4, 5, and 13), as well as mast cells in skin and brain. The high levels of interferon (IFN)γ not only in skin, but also in brain likely account for a significant decline in esterified very-long-chain N-acyl fatty acids in brain ceramides, again mimicking known IFNγ-induced changes in AD. Conclusion Baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both epidermis and neural tissues originate from the embryonic neuroectoderm. These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that the atopic diathesis could be extended to include ASD.
Given the associated health risks, various kinds of methods have been developed to appraise the oxidative potential of particulate matter. However, a standardized experimental approach to assessing the oxidative potential has not yet been established. Researchers need to apply reasonable approaches pertinent to the characteristics of the samples and the purposes of the respective studies and to understand the limitations of each approach. In the present study, the dithiothreitol-based analytical methods of measuring the oxidative potential of particulate matter were appraised for factors that affect the experimental results, such as the sampling substrate, extraction solution, and dithiothreitol reaction. This study reveals the limitations of each experimental approach, which stem from hydrophilic and hydrophobic characteristics, according to simulated lung fluid reactions. Analyses of a Teflon filter and simulated lung fluid were suggested as the most useful procedures based on the results of prior studies.
Background: Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as Autism Spectrum Disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation.Methods: We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various post-natal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels.Results: AD-like changes in ceramide content occurred by day one post-partum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with the early appearance of Th2 markers (i.e., interleukin [IL]-4, 5, & 13, mast cells) in the skin and brain. The high levels of interferon (IFN)g not only in skin, but also in brain likely account for a significant decrease in very-long-chain N-acyl fatty acids in brain ceramides that again mimicked known IFNg-induced changes in AD. Conclusion: The baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both the epidermis and neural tissues originate from the embryonic neuroectoderm These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that ASD could be included within the atopic diathesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.