Performing functional magnetic resonance imaging (fMRI) scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in fMRI connectivity analyses. One approach to limit motion has been to use shorter MRI protocols, though this reduces the reliability of results. Hence, there is a need to implement methods to achieve high-quality, low-motion data while not sacrificing data quantity. Here we show that by using a mock scan protocol prior to a scan, in conjunction with other in-scan steps (weighted blanket and incentive system), it is possible to achieve low-motion fMRI data in pediatric participants (age range: 7–17 years old) undergoing a 60 min MRI session. We also observe that motion is low during the MRI protocol in a separate replication group of participants, including some with autism spectrum disorder. Collectively, the results indicate it is possible to conduct long scan protocols in difficult-to-scan populations and still achieve high-quality data, thus potentially allowing more reliable fMRI findings.
BackgroundPerforming fMRI scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in functional magnetic resonance imaging (fMRI) connectivity analyses, and methods to limit the impact of movement on data quality are needed. One approach has been to use shorter MRI protocols, though this potentially reduces the reliability of the results.
ObjectiveHere we describe steps we have taken to limit head motion in an ongoing fMRI study of children undergoing a 60 minute MRI scan protocol. Specifically, we have used a mock scan protocol that trains participants to lie still while being scanned. We provide a detailed protocol and describe other in-scanner measures we have implemented, including an incentive system and the use of a weighted blanket.
Materials and methodsParticipants who received a formal mock scan (n = 12) were compared to participants who had an informal mock scan (n = 7). A replication group of participants (n = 16), including five with autism spectrum disorder, who received a formal mock scan were also compared to the informal mock scan group. The primary measure of interest was the mean frame-to-frame displacement across eight functional runs during the fMRI protocol.
ResultsParticipants in the formal mock scan and replication group tended to exhibit more low-motion functional scans than the informal mock scan group (P < 0.05). Across different functional scan conditions (i.e. while watching movie clips, performing an attention task, and during resting-state scans), effect sizes tended to be large (Hedge's g > 0.8).
ConclusionResults indicate that with appropriate measures, it is possible to achieve low-motion fMRI data in younger participants undergoing a long scan protocol.
Objective: Smoking cue-(SC) elicited craving can lead to relapse in SC-vulnerable individuals. Thus, identifying treatments that target SC-elicited craving is a top research priority. Reduced drug cue neural activity is associated with recovery and is marked by a profile of greater tonic (resting) activation in executive control regions, and increased connectivity between executive and salience regions. Evidence suggests the GABA-B agonist baclofen can reduce drug cue-elicited neural activity, potentially through its actions on the resting brain. Based on the literature, we hypothesize that baclofen's effects in the resting brain can predict its effects during SC exposure. Methods: In this longitudinal, double blind, placebo-controlled neuropharmacological study 43 non-abstinent, sated treatment-seeking cigarette smokers (63% male) participated in an fMRI resting-state scan and a SC-reactivity task prior to (T1) and 3 weeks following randomization (T2; baclofen: 80 mg/day; n = 21). Subjective craving reports were acquired before and after SC exposure to explicitly examine SC-induced craving. Results: Whole-brain full-factorial analysis revealed a group-by-time interaction with greater resting brain activation of the right dorsolateral prefrontal cortex (dlPFC) at T2 in the baclofen group (BAC) (pFWEcorr = 0.02), which was associated with reduced neural responses to SCs in key cue-reactive brain regions; the anterior ventral insula and ventromedial prefrontal cortex (pFWEcorr < 0.01). BAC, but not the placebo group reported decreased SC-elicited craving (p = 0.02). Conclusion: Results suggest that baclofen mitigates the reward response to SCs through an increase in tonic activation of the dlPFC, an executive control region. Through these mechanisms, baclofen may offer SC-vulnerable smokers protection from SC-induced relapse.
Prenatal cannabis use and maternal stress have been proposed as risk factors for autism spectrum disorder (ASD). Black mothers and mothers of lower socioeconomic status (SES) may be especially likely to experience high levels of stress. This study examined the impact of prenatal cannabis use and maternal stress (i.e., prenatal distress, racial discrimination, and lower SES) on child ASD-related behaviors in a sample of 172 Black mother-child pairs. We found that prenatal stress was significantly associated with ASD-related behaviors. Prenatal cannabis use did not predict ASD-related behaviors and did not interact with maternal stress to predict ASD-related behaviors. These findings replicate previous work on prenatal stress-ASD associations and add to the limited literature on prenatal cannabis-ASD associations in Black samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.