Background
South Korea experienced the novel coronavirus disease (COVID-19) outbreak in the early period; thus data from this country could provide significant implications for global mitigation strategies. This study reports how COVID-19 has spread in South Korea and examines the effects of rapid widespread diagnostic testing on the spread of the disease in the early epidemic phase.
Methods
We collected daily data on the number of confirmed cases, tests and deaths due to COVID-19 from 20 January to 13 April 2020. We estimated the spread pattern with a logistic growth model, calculated the daily reproduction number (Rt) and examined the fatality pattern of COVID-19.
Results
From the start date of the epidemic in Korea (18 February 2020), the time to peak and plateau were 15.2 and 25 days, respectively. The initial Rt was 3.9 [95% credible interval (CI) 3.7 to 4.2] and declined to <1 after 2 weeks. The initial epidemic doubling time was 3.8 days (3.4 to 4.2 days). The aggressive testing in the early days of the epidemic was associated with reduction in transmission speed of COVID-19. In addition, as of 13 April, the case fatality rate of COVID-19 in Korea was 2.1%, suggesting a positive effect of the targeted treatment policy for severe patients and medical resources.
Conclusions
Our findings provide important information for establishing and revising action plans based on testing strategies and severe patient care systems, needed to address the unprecedented pandemic.
Background
Cities are a major source of atmospheric CO2; however, understanding the surface CO2 exchange processes that determine the net CO2 flux emitted from each city is challenging owing to the high heterogeneity of urban land use. Therefore, this study investigates the spatiotemporal variations of urban CO2 flux over the Seoul Capital Area, South Korea from 2017 to 2018, using CO2 flux measurements at nine sites with different urban land-use types (baseline, residential, old town residential, commercial, and vegetation areas).
Results
Annual CO2 flux significantly varied from 1.09 kg C m− 2 year− 1 at the baseline site to 16.28 kg C m− 2 year− 1 at the old town residential site in the Seoul Capital Area. Monthly CO2 flux variations were closely correlated with the vegetation activity (r = − 0.61) at all sites; however, its correlation with building energy usage differed for each land-use type (r = 0.72 at residential sites and r = 0.34 at commercial sites). Diurnal CO2 flux variations were mostly correlated with traffic volume at all sites (r = 0.8); however, its correlation with the floating population was the opposite at residential (r = − 0.44) and commercial (r = 0.80) sites. Additionally, the hourly CO2 flux was highly related to temperature. At the vegetation site, as the temperature exceeded 24 ℃, the sensitivity of CO2 absorption to temperature increased 7.44-fold than that at the previous temperature. Conversely, the CO2 flux of non-vegetation sites increased when the temperature was less than or exceeded the 18 ℃ baseline, being three-times more sensitive to cold temperatures than hot ones. On average, non-vegetation urban sites emitted 0.45 g C m− 2 h− 1 of CO2 throughout the year, regardless of the temperature.
Conclusions
Our results demonstrated that most urban areas acted as CO2 emission sources in all time zones; however, the CO2 flux characteristics varied extensively based on urban land-use types, even within cities. Therefore, multiple observations from various land-use types are essential for identifying the comprehensive CO2 cycle of each city to develop effective urban CO2 reduction policies.
Studies on the pattern of heatwave mortality using nationwide data that include rural areas are limited. This study aimed to assess the risk of heatwave-related mortality and evaluate the health risk-based definition of heatwave. We collected data on daily temperature and mortality from 229 districts in South Korea in 2011–2017. District-specific heatwave-related mortality risks were calculated using a distributed lag model. The estimates were pooled in the total areas and for each urban and rural area using meta-regression. In the total areas, the threshold point of heatwave mortality risk was estimated at the 93rd percentile of temperature, and it was lower in urban areas than in rural areas (92nd percentile vs. 95th percentile). The maximum risk of heatwave-related mortality in the total area was 1.11 (95% CI: 1.01–1.22), and it was slightly greater in rural areas than in the urban areas (RR: 1.23, 95% CI: 0.99–1.53 vs. RR: 1.10, 95% CI: 1.01–1.20). The results differ by age- and cause-specific deaths. In conclusion, the patterns of heatwave-related mortality risk vary by area and sub-population in Korea. Thus, more target-specific heatwave definitions and action plans should be established according to different areas and populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.