Pertumbuhan ekonomi merupakan salah satu indikator dalam Sustainable Development Goals (SDGs) pada peningkatan kegiatan ekonomi. Salah satu kegiatan yang menopang berjalannya perekonomian adalah perdagangan antar negara, seperti ekspor. Di Indonesia, ekspor non migas memegang peranan penting dalam total ekspor beberapa tahun terakhir, diantaranya ekspor batu bara menjadi ekspor utama. Oleh karena itu, prediksi harga ekspor non migas Indonesia menjadi sangat penting sebagai bahan evaluasi kebijakan untuk mendorong pertumbuhan ekonomi. Hal tersebut menjadi fokus utama dari penelitian ini. Dalam studi ini, prakiraan harga ekspor non migas dibuat dengan mempertimbangkan isu-isu terkini seperti pandemi COVID-19 dan perang Rusia-Ukraina. Keakuratan model yang diperoleh dari estimator deret Fourier dan Support Vector Regression (SVR) diselidiki dengan membandingkan nilai Mean Absolute Percentage Error (MAPE) untuk memprediksi harga ekspor non migas Indonesia. Hasil penelitian menunjukkan bahwa masalah pandemi COVID-19 dan perang Rusia-Ukraina berdampak signifikan terhadap harga ekspor non migas. Model SVR dengan kernel Radial Basis Function (RBF) menunjukkan akurasi yang lebih baik daripada model estimator deret Fourier fungsi cos sin, dengan masing-masing nilai MAPE sebesar 9,29 dan 15,26% untuk setiap data uji. Oleh karena itu, kajian ini diharapkan dapat menjadi dasar untuk merumuskan kebijakan terkait pengaturan proses ekspor non migas untuk mendukung pertumbuhan ekonomi di Indonesia. Kata kunci⎯ ekspor, non migas, estimator deret Fourier, support vector regression, radial basis function.ABSTRACT ⎯ Economic growth is one of the indicators in the Sustainable Development Goals (SDGs) on increasing economic activity. One of the activities that supports the running of the economy is trade between countries, such as exports. In Indonesia, non-oil and gas exports have played an important role in total exports in recent years, including coal exports being the main export. Therefore, price predictions for Indonesia's non-oil and gas exports are very important as material for evaluating policies to encourage economic growth. This is the main focus of this research. In this study, non-oil and gas export price forecasts are made taking into account current issues such as the COVID-19 pandemic and the Russia-Ukraine war. The accuracy of the model obtained from the Fourier series estimator and Support Vector Regression (SVR) is investigated by comparing the Mean Absolute Percentage Error (MAPE) value to predict Indonesia's non-oil and gas export prices. The results of the study show that the COVID-19 pandemic and the Russia-Ukraine war have had a significant impact on non-oil and gas export prices. The SVR model with the Radial Basis Function (RBF) kernel shows better accuracy than the Fourier series estimator model of the cos sin function, with MAPE values of 9.29 and 15.26% for each test data, respectively. Therefore, this study is expected to be the basis for formulating policies related to regulating non-oil and gas export p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.