CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.
After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.
Breast cancer is one of complex diseases that are influenced by environment. Various genetic and epigenetic alterations are provoking causes of breast carcinogenesis. Dynamic epigenetic regulation including DNA methylation and histone modification induces dysregulation of genes related to proliferation, apoptosis, and metastasis in breast cancer. DNA methylation is strongly associated with the repression of transcription through adding to the methyl group by DNA methyltransferases (DNMTs), and tumor suppressor genes such as CCND2 and RUNX3 have been investigated to undergo hypermethylation at promoter region in breast cancer. In addition, histone deacetylases (HDACs) contribute to transcriptional repression by removing acetyl group at lysine residues leading to tumorigenesis. Since epigenetic changes are reversible, therapeutic approaches have been applied with epigenetic modification drugs such as DNMT inhibitors and HDAC inhibitors. In this chapter, we will summarize the feature of epigenetic markers in breast cancer cells and the effect of single or combination of epigenetic reagents for breast cancer therapy.
Superoxide dismutases (SODs) are essential antioxidant enzymes that prevent massive superoxide radical production and thus protect cells from damage induced by free radicals. However, this concept has rarely been applied to directly impede the function of driver oncogenes, thus far. Here, leveraging efforts from SOD model complexes, we report the novel finding of biomimetic copper complexes that efficiently scavenge intracellularly generated free radicals and, thereby, directly access the core consequence of colorectal cancer suppression. We conceived four structurally different SOD-mimicking copper complexes that showed distinct disproportionation reaction rates of intracellular superoxide radical anions. By replenishing SOD models, we observed a dramatic reduction of intracellular reactive oxygen species (ROS) and adenine 5′-triphosphate (ATP) concentrations that led to cell cycle arrest at the G2/M stage and induced apoptosis in vitro and in vivo. Our results showcase how nature-mimicking models can be designed and fine-tuned to serve as a viable chemotherapeutic strategy for cancer treatment.
The activation of dioxygen is the keystone of all forms of aerobic life. Many biological functions rely on the redox versatility of metal ion to perform reductive activation-mediated processes entailing...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.