The electrocardiogram (ECG) is the most commonly used tool for diagnosing cardiovascular diseases. Recently, there have been a number of attempts to classify cardiac arrhythmias using machine learning and deep learning techniques. In this study, we propose a novel method to generate the gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) from one-dimensional signals. From the GLCM and GLRLM, we extracted morphological features for automatic ECG signal classification. The extracted features were combined with six machine learning algorithms (decision tree, k-nearest neighbor, naïve Bayes, logistic regression, random forest, and XGBoost) to classify cardiac arrhythmias. Experiments were conducted on a 12-lead ECG database collected from Chapman University and Shaoxing People’s Hospital. Of the six machine learning algorithms, combining XGBoost with the proposed features yielded an accuracy of 90.46%, an AUC of 0.982, a sensitivity of 0.892, a precision of 0.900, and an F1 score of 0.895 and presented better results than wavelet features with XGBoost. The experimental results show the effectiveness of the proposed feature extraction algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.