Small satellites, accomplished by new technologies, allowed the achievement of many tasks and experiments in space. In this context, Pico satellites team of Research Group on Intelligent Machines laboratory of the engineering school of Sfax, Tunisia, has designed and prototyped Microstrip antennas for the first Tunisian Pico satellite ERPSat-1 use. Its resonant frequency is 2.4 GHz. The various losses like atmospheric, free space, Ionosphere and rain losses are taken in consideration. Atmospheric and free space losses vary in accordance with the distance between the Pico satellite ERPSat1 and the ground antenna. During simulations, the changes of the earth antenna which are based on elevation angle, pointing and polarization losses should be taken in consideration. The obtained Microstrip antennas will be used for inter Picosatellites and their ground stations communication.In this paper, we present the design of the ERPSat-1 Microstrip antennas, the results and the limits of the used models to prove their use for space communications. As a first step, these Microstrip antennas will be used in remote sensing system for data transmission from camera to the FPGA platform developed in REGIM laboratory of Sfax University.
The paper focuses on conception and development of complex systems composed mainly by a pump syringe subsystem and an electronically injector that facilitates patients saving data operation for medical staff use. We successfully developed conventional approaches for medical system staff requirements, such as system boundary conditions. Decisions at a given level are studied. We propose a complex system architecture, based mainly on patients collected data and ordered stepper injection parameters. System is successfully simulated and prototyped. Design and implement tests are accomplished, the proposed system ensures both the electric syringe pump and the electric injector operation. In addition, this new system introduces several additional options as patient database development and automation injection operation. Development and software operating tests to create a visualization control interface are validated. The solution performs syringe function and electronic injector. User can manage a syringe in two C modes of technology. We propose a program composed of two linked parts. If an error such radiologist bad target selection is made, an image with lower intrinsic quality emerges. Developed Shoot syringe different electronic cards are simulated and prototyped, in addition, maps are driven, prototype. All tests results are accomplished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.