Proton-exchange-membrane fuel cells (PEMFCs) are a popular source of alternative energy because of their operational reliability and compactness. This paper presents an improved model to represent the semi-empirical voltage of PEMFCs to overcome the limitations of existing models. The proposed model considers variations in ambient conditions, such as the ambient temperature
. In many situations, we want to verify the existence of a relationship between multivariate time series. Here, we propose a semiparametric approach for testing the independence between two infinite‐order vector autoregressive (VAR(∞)) series, which is an extension of Hong's [Biometrika (1996c) vol. 83, 615–625] univariate results. We first filter each series by a finite‐order autoregression and the test statistic is a standardized version of a weighted sum of quadratic forms in the residual cross‐correlation matrices at all possible lags. The weights depend on a kernel function and on a truncation parameter. Using a result of Lewis and Reinsel [Journal of Multivariate Analysis (1985) Vol. 16, pp. 393–411], the asymptotic distribution of the test statistic is derived under the null hypothesis and its consistency is also established for a fixed alternative of serial cross‐correlation of unknown form. Apart from standardization factors, the multivariate portmanteau statistic proposed by Bouhaddioui and Roy [Statistics and Probability Letters (2006) vol. 76, pp. 58–68] that takes into account a fixed number of lags can be viewed as a special case by using the truncated uniform kernel. However, many kernels lead to a greater power, as shown in an asymptotic power analysis and by a small simulation study in finite samples. A numerical example with real data is also presented.
Big Data is an essential research area for governments, institutions, and private agencies to support their analytics decisions. Big Data refers to all about data, how it is collected, processed, and analyzed to generate value-added data-driven insights and decisions. Degradation in Data Quality may result in unpredictable consequences. In this case, confidence and worthiness in the data and its source are lost. In the Big Data context, data characteristics, such as volume, multi-heterogeneous data sources, and fast data generation, increase the risk of quality degradation and require efficient mechanisms to check data worthiness. However, ensuring Big Data Quality (BDQ) is a very costly and time-consuming process, since excessive computing resources are required. Maintaining Quality through the Big Data lifecycle requires quality profiling and verification before its processing decision. A BDQ Management Framework for enhancing the pre-processing activities while strengthening data control is proposed. The proposed framework uses a new concept called Big Data Quality Profile. This concept captures quality outline, requirements, attributes, dimensions, scores, and rules. Using Big Data profiling and sampling components of the framework, a faster and efficient data quality estimation is initiated before and after an intermediate pre-processing phase. The exploratory profiling component of the framework plays an initial role in quality profiling; it uses a set of predefined quality metrics to evaluate important data quality dimensions. It generates quality rules by applying various pre-processing activities and their related functions. These rules mainly aim at the Data Quality Profile and result in quality scores for the selected quality attributes. The framework implementation and dataflow management across various quality management processes have been discussed, further some ongoing work on framework evaluation and deployment to support quality evaluation decisions conclude the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.