The wide use of cameras by the public has raised the interest of image quality evaluation and ranking. Current cameras embed complex processing pipelines that adapt strongly to the scene content by implementing, for instance, advanced noise reduction or local adjustment on faces. However, current methods of Image Quality assessment are based on static geometric charts which are not representative of the common camera usage that targets mostly portraits. Moreover, on non-synthetic content most relevant features such as detail preservation or noisiness are often untractable.To overcome this situation, we propose to mix classical measurements and Machine learning based methods: we reproduce realistic content triggering this complex processing pipelines in controlled conditions in the lab which allows for rigorous quality assessment. Then, ML based methods can reproduce perceptual quality previously annotated. In this paper, we focus on noise quality evaluation and test on two different setups: closeup and distant portraits. These setups provide scene capture conditions flexibility, but most of all, they allow the evaluation of all quality camera ranges from high quality DSLRs to video conference devices. Our numerical results show the relevance of our solution compared to geometric charts and the importance of adapting to realistic content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.