To direct Cre-mediated recombination to differentiated medium-size spiny neurons (MSNs) of the striatum, we generated transgenic mice that express Cre recombinase under the regulation of DARPP-32 genomic fragments. In this reported line, recombination of an R26R reporter allele occurred postnatally in the majority of medium-size spiny neurons of the dorsal and ventral striatum (caudate nucleus and nucleus accumbens/olfactory tubercle), as well as in the piriform cortex and choroid plexus. Although regulatory fragments were selected to target MSNs, low levels of Cre-recombinase expression, as detected by beta-galactosidase activity from the R26R reporter gene, were also apparent in widely dispersed areas or cells of the forebrain and hindbrain. These included the primary and secondary motor cortex, and association cortex, as well as in the olfactory bulb and cerebellar Purkinje cells. Notably, expression in these regions was well below that of endogenous DARPP-32. Analysis of colocalization of beta-galactosidase, as detected either by histochemistry or immunocytochemistry, and DARPP-32 revealed double-labeling in almost all DARPP-32-expressing MSNs in the postnatal striatum, but not in extrastriatal regions. The DARPP-32Cre transgenic mouse line thus provides a useful tool to specifically express and/or inactivate genes in mature MSNs of the striatum.
Brain-derived neurotrophic factor (BDNF) regulates several properties of striatal dopaminoceptive medium-sized spiny neurons (MSNs) in vivo and in vitro, including expression levels of DARPP-32 (dopamine and cyclic adenosine 3 H ,5 Hmonophosphate-regulated phosphoprotein, 32 kDa). DARPP-32 is expressed in 96% of the MSNs, and is a key modulator of dopamine actions. We investigated the intracellular signal transduction pathways activated by BDNF in MSNs and via which BDNF induces DARPP-32 expression. We found that phosphorylation of the cyclic AMP response element binding protein (CREB) is only transiently increased following stimulation of MSNs by BDNF, whereas increased phosphorylation of the extracellular signal regulated kinases 1 and 2 (Erk1/2) and Akt is sustained for longer than 4 h. Treatment of cultures with inhibitors of mitogen-activated protein kinase kinase (MEK) or phosphatidylinositide 3-kinase (PI3K) showed that the majority of the BDNF-induced increase in DARPP-32 requires the PI3K pathway. We also found that inhibition of PI3K reduces BDNF-induced Erk phosphorylation, indicating that cross-talk between these pathways may play a prominent role in MSNs.
Gender differences exist in the development of the nigrostriatal dopamine system, and in the incidence and course of pediatric and adult neuropsychiatric diseases in which this system is implicated. The medium size spiny neuron (MSN) is the major output neuron of the caudate nucleus. It receives a large dopaminergic input from the substantia nigra, and 96% of the MSNs express DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein and key mediator of dopamine function. There are few examples, however, of direct effects of sex hormones, including 17β-estradiol (E2), on the MSN. We report that in vitro, E2 (10–50 nM) promotes MSN phenotypic maturation, as determined by increased soma size, neurite length, and DARPP-32 protein levels. Treatment with the ‘anti-estrogen’ ICI 182,780 or the partial-agonist tamoxifen also increases DARPP-32 levels, but when added to E2, ICI 182,780 only prevents the increase in DARPP-32 levels and increase in soma size and neurite length. Surprisingly, maturation effects are more robust in cells derived exclusively from female embryos. Western blot analysis of protein lysates and immunocytochemistry of cultured MSNs reveals the presence of the estrogen receptor β (ERβ). These data suggest that ERβ may mediate the differentiating effect of E2 on embryonic MSNs, and provide new avenues of investigation for the role of sex hormones in the development of the striatum and in diseases affecting the basal ganglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.