BackgroundCharacterization of the Mycobacterium leprae genome has made possible the development of Polymerase Chain Reaction (PCR) systems that can amplify different genomic regions. Increased reliability and technical efficiency of quantitative PCR (qPCR) makes it a promising tool for early diagnosis of leprosy. Index cases that are multibacillary spread the bacillus silently, even before they are clinically diagnosed. Early detection and treatment could prevent transmission in endemic areas.MethodsIn this study, the qPCR technique is used to detect DNA of M. leprae in samples of slit skin smears (SSS) of the ear lobe and blood of leprosy patients and their asymptomatic household contacts residing in Governador Valadares, MG, Brazil, a hyperendemic area for leprosy. A total of 164 subjects participated in the study: 43 index cases, 113 household contacts, and, as negative controls, 8 individuals who reported no contact with patients nor history of leprosy in the family. The qPCR was performed to amplify 16S rRNA fragments and was specifically designed for M. leprae.ResultsOf asymptomatic household contacts, 23.89% showed bacillary DNA by qPCR in samples of SSS and blood. Also, 48.84% of patients diagnosed with leprosy were positive for qPCR while the bacillary load was positive in only 30.23% of patients. It is important to note that most patients were already receiving treatment when the collection of biological material for qPCR was performed. The level of bacillary DNA from household contacts was similar to the DNA levels detected in the group of paucibacillary patients.ConclusionConsidering that household contacts comprise a recognizable group of individuals with a high risk of disease, as they live in close proximity to a source of infection, qPCR can be used to estimate the risk of progress towards leprosy among household contacts and as a routine screening method for a chemoprophylactic protocol.Electronic supplementary materialThe online version of this article (10.1186/s12879-018-3056-2) contains supplementary material, which is available to authorized users.
Background: Characterization of the Mycobacterium leprae genome has made possible the development of Polymerase Chain Reaction (PCR) systems that can amplify different genomic regions. Increased reliability and technical efficiency of quantitative PCR (qPCR) makes it a promising tool for early diagnosis of leprosy. Index cases that are multibacillary spread the bacillus silently, even before they are clinically diagnosed. Early detection and treatment could prevent transmission in endemic areas. Methods: In this study, the qPCR technique is used to detect DNA of M. leprae in samples of slit skin smears (SSS) of the ear lobe and blood of leprosy patients and their asymptomatic household contacts residing in Governador Valadares, MG, Brazil, a hyperendemic area for leprosy. A total of 164 subjects participated in the study: 43 index cases, 113 household contacts, and, as negative controls, 8 individuals who reported no contact with patients nor history of leprosy in the family. The qPCR was performed to amplify 16S rRNA fragments and was specifically designed for M. leprae. Results: Of asymptomatic household contacts, 23.89% showed bacillary DNA by qPCR in samples of SSS and blood. Also, 48.84% of patients diagnosed with leprosy were positive for qPCR while the bacillary load was positive in only 30.23% of patients. It is important to note that most patients were already receiving treatment when the collection of biological material for qPCR was performed. The level of bacillary DNA from household contacts was similar to the DNA levels detected in the group of paucibacillary patients. Conclusion: Considering that household contacts comprise a recognizable group of individuals with a high risk of disease, as they live in close proximity to a source of infection, qPCR can be used to estimate the risk of progress towards leprosy among household contacts and as a routine screening method for a chemoprophylactic protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.