Different regimes are usually observed for fluid migration through an immersed granular layer. In this work, we report a puzzling behavior when injecting water at a constant flow rate through a nozzle at the bottom of an immersed granular layer in a Hele-Shaw cell. In a given range of parameters (granular layer height and fluid flow-rate) the granular bed is not only fuidized, but the particle-laden jet also exhibits periodic oscillations. The frequency and amplitude of the oscillations are quantified. The Strouhal number displays a power-law behavior as a function of a non-dimensional parameter, J, defined as the ratio between the jet velocity at the initial granular bed height and the inertial particle velocity. Fluid-particle coupling is responsible for the jet oscillations. This mechanism could be at the origin of the cyclic behavior of pockmarks and mud volcanoes in sedimentary basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.