The aim of this work was to contribute to the knowledge on the chemical composition and bioactive properties of two species of the Ocimum genus, namely O. basilicum cultivar ’Cinammon’ and O. × citriodorum. For this purpose, samples of these plants grown in Portugal were evaluated for their composition in phenolic and volatile compounds, and the infusion and hydroethanolic extracts were assessed for their in vitro antioxidant, antimicrobial, cytotoxic, and anti-inflammatory activities. In total, the two basil samples showed the presence of seven caffeic acid and derivatives (dimers, trimers, and tetramers) and five flavonoids, mainly glycoside derivatives of quercetin. Despite some qualitative and quantitative differences, in both samples rosmarinic acid was the major phenolic compound, and linalool the predominant volatile compound. In general, the tested extracts provided relevant bioactive properties since both basil species showed higher antioxidant activity in Thiobarbituric Acid Reactive Substances (TBARs) and Oxidative Hemolysis Inhibition (OxHLIA) assays when compared with the positive control Trolox. Despite O. × citriodorum extracts showing slightly better activity against some strains, both types of extracts evidenced similar antimicrobial activity, being more active against Gram-positive bacteria. The extracts also revealed interesting cytotoxicity, particularly the O. × citriodorum hydroethanolic extract which was also the only one exhibiting anti-inflammatory activity.
Infections caused by drug-resistant bacteria are a serious threat to human and global public health. Moreover, in recent years, very few antibiotics have been discovered and developed by pharmaceutical companies. Therefore, there is an urgent need to discover and develop new antibacterial agents to combat multidrug-resistant bacteria. In this study, two novel series of juglone/naphthazarin derivatives (43 compounds) were synthesized and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA, and clinical and reference Gram-negative bacteria E. coli and P. aeruginosa. These strains are of clinical importance because they belong to ESKAPE pathogens. Compounds 3al, 5ag, and 3bg showed promising activity against clinical and reference MSSA (MIC: 1–8 µg/ml) and good efficacy against clinical MRSA (MIC: 2–8 µg/ml) strains. 5am and 3bm demonstrated better activity on both MSSA (MIC: 0.5 µg/ml) and MRSA (MIC: 2 µg/ml) strains. Their MICs were similar to those of cloxacillin against clinical MRSA strains. The synergistic effects of active compounds 3al, 5ag, 5am, 3bg, and 3bm were evaluated with reference antibiotics, and it was found that the antibiotic combination with 3bm efficiently enhanced the antimicrobial activity. Compound 3bm was found to restore the sensitivity of clinical MRSA to cloxacillin and enhanced the antibacterial activity of vancomycin when they were added together. In the presence of 3bm, the MIC values of vancomycin and cloxacillin were lowered up to 1/16th of the original MIC with an FIC index of 0.313. Moreover, compounds 3al, 5ag, 5am, 3bg, and 3bm did not present hemolytic activity on sheep red blood cells. In silico prediction of ADME profile parameter results for 3bm is promising and encouraging for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.