This report is circulated to persons believed to have an active interest in the subject matter; it is intended to furnish rapid communication and to stimulate comment, including corrections of possible errors.
When polymeric liquids undergo large‐amplitude shearing oscillations, the shear stress responds as a Fourier series, the higher harmonics of which are caused by fluid nonlinearity. Previous work on large‐amplitude oscillatory shear flow has produced analytical solutions for the first few harmonics of a Fourier series for the shear stress response (none beyond the fifth) or for the normal stress difference responses (none beyond the fourth) [JNNFM, 166, 1081 (2011)], but this growing subdiscipline of macromolecular physics has yet to produce an exact solution. Here, we derive what we believe to be the first exact analytical solution for the response of the extra stress tensor in large‐amplitude oscillatory shear flow. Our solution, unique and in closed form, includes both the normal stress differences and the shear stress for both startup and alternance. We solve the corotational Maxwell model as a pair of nonlinear‐coupled ordinary differential equations, simultaneously. We choose the corotational Maxwell model because this two‐parameter model (η0 and λ) is the simplest constitutive model relevant to large‐amplitude oscillatory shear flow, and because it has previously been found to be accurate for molten plastics (when multiple relaxation times are used). By relevant we mean that the model predicts higher harmonics. We find good agreement between the first few harmonics of our exact solution, and of our previous approximate expressions (obtained using the Goddard integral transform). Our exact solution agrees closely with the measured behavior for molten plastics, not only at alternance, but also in startup.
Large-amplitude oscillatory shear flow (LAOS) is a popular for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η ∞ , raises the real part of the complex viscosity, and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in Pipkin space. () are the real and minus [10] the imaginary parts of the nonlinear complex viscosities, η n * , and first and second normal stress coefficients, Ψ 1,n * and Ψ 2,n * . Some prefer to write Eq. (6) as (see Eq.(3) of [11]):
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.