Hybrid dynamical systems can exhibit many unique phenomena, such as Zeno behavior. Zeno behavior is the occurrence of infinite discrete transitions in finite time. Zeno behavior has been likened to a form of finitetime asymptotic stability, and corresponding Lyapunov theorems have been developed. In this paper, we propose a method to construct Lyapunov functions to prove Zeno stability of compact sets in cyclic hybrid systems with parametric uncertainties in the vector fields, domains and guard sets, and reset maps utilizing sum-ofsquares programming. This technique can easily be applied to cyclic hybrid systems without parametric uncertainties as well. Examples illustrating the use of the proposed technique are also provided.
Abstract-In this paper, we propose a new convex approach to stability analysis of nonlinear systems with polynomial vector fields. First, we consider an arbitrary convex polytope that contains the equilibrium in its interior. Then, we decompose the polytope into several convex sub-polytopes with a common vertex at the equilibrium. Then, by using Handelman's theorem, we derive a new set of affine feasibility conditions -solvable by linear programming-on each sub-polytope. Any solution to this feasibility problem yields a piecewise polynomial Lyapunov function on the entire polytope. This is the first result which utilizes Handelman's theorem and decomposition to construct piecewise polynomial Lyapunov functions on arbitrary polytopes. In a computational complexity analysis, we show that for large number of states and large degrees of the Lyapunov function, the complexity of the proposed feasibility problem is less than the complexity of certain semi-definite programs associated with alternative methods based on Sum-of-Squares or Polya's theorem. Using different types of convex polytopes, we assess the accuracy of the algorithm in estimating the region of attraction of the equilibrium point of the reverse-time Van Der Pol oscillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.