The expression of the breast cancer susceptibility protein BRCA2 is highly regulated in human breast, ovary, and pancreatic cells. BRCA2 is not expressed in the nondividing cells, and expression is cell cycle stage-dependent and is elevated in the sporadic cancer cells. Mutational analysis of the upstream sequence of the human BRCA2 gene revealed an E2-box-containing silencer at the ؊701 to ؊921 position. The E2-box is essential for the cell-cycle stage-dependent activity of the silencer. We affinity-purified a 29-kDa silencer-binding protein (SBP) from the nuclear extracts of human breast cells BT-549 and MDA-MB-231. We explored whether the E2-box-binding repressor protein SLUG, which is of similar molecular size, is involved in the silencing process. Supershift assay with the purified SBP and anti-SLUG antibody revealed the identity of the SBP as SLUG. We found that silencer is inactive in the human breast cancer cells such as MDA-MB-468 and MCF-7 that do not express SLUG, further suggesting the involvement of SLUG in the BRCA2 gene silencing. Inducible expression of human SLUG in the dividing MDA-MB-468 cells reduced BRCA2 RNA levels with the activation of the silencer. Furthermore, small interfering RNA-mediated knockdown of SLUG mRNA in the BT-549 cells caused inhibition of the silencer function. Chromatin immunoprecipitation assays suggested that SLUG mediates its action by recruiting C-terminal-binding protein-1 (CtBP-1) and histone deacetylase-1 (HDAC-1) at the silencer E2-box. The general HDAC inhibitor, trichostatin A, inhibited the SLUG-mediated regulation of the silencer function. It thus appears that SLUG is a negative regulator for BRCA2 gene expression.
Objective To evaluate the effects and mechanisms of action of Vitamin D on human uterine leiomyoma (HuLM) cell proliferation in vitro. Design Laboratory study. Setting University hospitals. Patients(s) Not applicable. Interventions(s) Not applicable. Main Outcome Measure(s) HuLM cells were treated with 1, 25-dihydroxyvitamin D3 (Vitamin D) and cell proliferation was assayed by the MTT technique. PCNA, BCL-2, BCL-w, CDK-1 and COMT protein levels were analyzed by Western blotting. COMT mRNA and enzyme activity were assayed by quantitative RT-PCR and HPLC analysis, respectively. The role of COMT was evaluated in stable HuLM cells by silencing COMT expression. Result(s) Vitamin D inhibited the growth of HuLM cells by 47% ± 0.03 at 1 µM and by 38% ± 0.02 at 0.1 µM compared to control cells at 120 hours of treatment (P < 0.05). Vitamin D inhibited ERK activation and downregulated the expression of BCL-2, BCL-w, CDK1 and PCNA. Western blot, RT-PCR and enzyme assay of COMT demonstrated inhibitory effects of Vitamin D on COMT expression and enzyme activity. Silencing endogenous COMT expression abolished Vitamin D-mediated inhibition of HuLM cell proliferation. Conclusion(s) Vitamin D inhibits growth of HuLM cells through the down-regulation of PCNA, CDK1 and BCL-2, and suppresses COMT expression and activity in HuLM cells. Thus, hypovitaminosis D appears to be a risk factor for uterine fibroids.
Uterine leiomyomas (fibroids) are the most common benign tumors in women of reproductive age. These tumors are three to four times more prevalent in African American women, who also have a 10 times higher incidence of hypovitaminosis D than white women. Recent studies have demonstrated the antitumor effects of 1,25-dihydroxyvitamin D3 on several cancers, but its effects on uterine leiomyomas are still unknown. To determine the antitumor and therapeutic effects of 1,25-dihydroxyvitamin D3 on uterine leiomyomas, female Eker rats (14-16 mo old) harboring uterine leiomyomas were randomized into control and experimental groups and were given vehicle versus 1,25-dihydroxyvitamin D3 (0.5 μg/kg per day) subcutaneously for 3 wk, respectively. At the end of the experiment, the rats were euthanized, and the leiomyoma tumors were analyzed. Treatment with 1,25-dihydroxyvitamin D3 significantly reduced leiomyoma tumor size in Eker rats. It also reduced leiomyoma size by suppressing cell growth and proliferation-related genes (Pcna, cyclin D1 [Ccnd1], Myc, Cdk1, Cdk2, and Cdk4), antiapoptotic genes (Bcl2 and Bcl2l1 [Bcl-x]), and estrogen and progesterone receptors. Additionally, immunohistochemistry revealed decreased expression of PCNA and MKI67 (a marker of proliferation) and increased expression of caspase 3 in 1,25-dihydroxyvitamin D3-treated Eker rat leiomyomas. Toxicity analyses using serum samples showed similar levels of SGOT, SGPT, calcium, and total bilirubin in 1,25-dihydroxyvitamin D3-treated and vehicle-treated control Eker rats. These results support that 1,25-dihydroxyvitamin D3 is an antitumor agent that may be a potential safe, nonsurgical therapeutic option for the treatment of uterine leiomyomas.
Accumulation of oxidized lipids in the arterial wall contributes to atherosclerosis. Glutathione peroxidase-4 (GPx4) is a hydroperoxide scavenger that removes oxidative modifications from lipids such as free fatty acids, cholesterols, and phospholipids. Here, we set out to assess the effects of GPx4 overexpression on atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. The results revealed that atherosclerotic lesions in the aortic tree and aortic sinus of ApoE(-/-) mice overexpressing GPx4 (hGPx4Tg/ApoE(-/-)) were significantly smaller than those of ApoE(-/-) control mice. GPx4 overexpression also diminished signs of advanced lesions in the aortic sinus, as seen by a decreased occurrence of fibrous caps and acellular areas among hGPx4Tg/ApoE(-/-) animals. This delay of atherosclerosis in hGPx4Tg/ApoE(-/-) mice correlated with reduced aortic F(2)-isoprostane levels (R(2)=0.75, p<0.01). In addition, overexpression of GPx4 lessened atherogenic events induced by the oxidized lipids lysophosphatidylcholine and 7-ketocholesterol, including upregulated expression of adhesion molecules in endothelial cells and adhesion of monocytes to endothelial cells, as well as endothelial necrosis and apoptosis. These results suggest that overexpression of GPx4 inhibits the development of atherosclerosis by decreasing lipid peroxidation and inhibiting the sensitivity of vascular cells to oxidized lipids.
Objective-Investigate the effect of epigallocatechin gallate (EGCG), on rat leiomyoma (ELT3) cells in vitro and in nude mice model. Study Design-ELT3 cells were treated with various concentrations of EGCG. Cell proliferation, PCNA and Cdk4 protein levels were evaluated. ELT3 cells were inoculated subcutaneously in female athymic nude mice. Animals were fed 1.25mg EGCG (in drinking water)/mouse/day. Tumors were collected and evaluated at 4 and 8 weeks post-treatment.Results-Inhibitory effect of EGCG (200 μM) on ELT3 cells was observed after 24 h treatment (p<0.05). At ≥50μM, EGCG significantly decreased PCNA and Cdk4 protein levels (p<0.05). In vivo, EGCG treatment dramatically reduced the volume and weight of tumors at 4 and 8 weeks posttreatment (p<0.05). The PCNA and Cdk4 protein levels were significantly reduced in EGCG treated group (p<0.05).Conclusion-EGCG effectively inhibits the proliferation and induce apoptosis in rat ELT3 uterine leiomyoma cells in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.