We report an atomistic physical model for the passive membrane permeability of cyclic peptides. The computational modeling was performed in advance of the experiments and did not involve the use of "training data". The model explicitly treats the conformational flexibility of the peptides by extensive conformational sampling in low (membrane) and high (water) dielectric environments. The passive membrane permeabilities of 11 cyclic peptides were obtained experimentally using a parallel artificial membrane permeability assay (PAMPA) and showed a linear correlation with the computational results with R(2) = 0.96. In general, the results support the hypothesis, already well established in the literature, that the ability to form internal hydrogen bonds is critical for passive membrane permeability and can be the distinguishing factor among closely related compounds, such as those studied here. However, we have found that the number of internal hydrogen bonds that can form in the membrane and the solvent-exposed polar surface area correlate more poorly with PAMPA permeability than our model, which quantitatively estimates the solvation free energy losses upon moving from high-dielectric water to the low-dielectric interior of a membrane.
This review describes studies of particular enzymatically catalyzed reactions to investigate the possibility that catalysis is mediated by protein dynamics. That is, evolution has crafted the protein backbone of the enzyme to direct vibrations in such a fashion to speed reaction. The review presents the theoretical approach we have used to investigate this problem, but it is designed for the nonspecialist. The results show that in alcohol dehydrogenase, dynamic protein motion is in fact strongly coupled to chemical reaction in such a way as to promote catalysis. This result is in concert with both experimental data and interpretations for this and other enzyme systems studied in the laboratories of the two other investigators who have published reviews in this issue.
Ligand binding affinity prediction is one of the most important applications of computational chemistry. However, accurately ranking compounds with respect to their estimated binding affinities to a biomolecular target remains highly challenging. We provide an overview of recent work using molecular mechanics energy functions to address this challenge. We briefly review methods that use molecular dynamics and Monte Carlo simulations to predict absolute and relative ligand binding free energies, as well as our own work in which we have developed a physics-based scoring method that can be applied to hundreds of thousands of compounds by invoking a number of simplifying approximations. In our previous studies, we have demonstrated that our scoring method is a promising approach for improving the discrimination between ligands that are known to bind and those that are presumed not to, in virtual screening of large compound databases. In new results presented here, we explore several improvements to our computational method including modifying the dielectric constant used for the protein and ligand interiors, and empirically scaling energy terms to compensate for deficiencies in the energy model. Future directions for further improving our physics-based scoring method are also discussed.
We demonstrate that using an all-atom molecular mechanics force field combined with an implicit solvent model for scoring protein-ligand complexes is a promising approach for improving inhibitor enrichment in the virtual screening of large compound databases. The rescoring method is evaluated by the extent to which known binders for nine diverse, therapeutically relevant enzymes are enriched against a background of approximately 100,000 drug-like decoys. The improvement in enrichment is most robust and dramatic within the top 1% of the ranked database, that is, the first thousand compounds; below the first few percent of the ranked database, there is little overall improvement. The improved early enrichment is likely due to the more realistic treatment of ligand and receptor desolvation in the rescoring procedure. We also present anecdotal but encouraging results assessing the ability of the rescoring method to predict specificity of inhibitors for structurally related proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.