An atmospheric particular matter, commonly recognized as PM, contains solid particles and liquid droplets suspending in an ambient air. A high concentration of PM is known to seriously cause adverse health effects to humans especially a small-sized particle, known as PM2.5. Not only health effects, environmental effects are also obviously observed. This work aims to estimate a likelihood of PM2.5 exceeding a pre-defined safety threshold. Multiple machine learning models are explored in this work. Particularly, classification models are implemented based on meteorological data and air pollutant features measured at different altitudes above a ground level. These features are shifted back to various time steps resulting in more insightful time-lagged features. Furthermore, a feature selection technique is implemented to specify a desirable set of important features. A re-sampling technique is also employed to address an unbalancing level of the response value in an original data set. The proposed models are evaluated on a case study whose data set is collected from an air monitoring station located in Bangkok, Thailand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.