It is widely recognized that nucleosynthetic output of the first, Population III supernovae was a catalyst defining the character of subsequent stellar generations. Most of the work on the earliest enrichment was carried out assuming that the first stars were extremely massive and that the associated supernovae were unusually energetic, enough to completely unbind the baryons in the host cosmic minihalo and disperse the synthesized metals into the intergalactic medium. Recent work, however, suggests that the first stars may in fact have been somewhat less massive, with a characteristic mass scale of a few tens of solar masses. We present a cosmological simulation following the transport of the metals synthesized in a Population III supernova assuming that it had an energy of 10 51 ergs, compatible with standard Type II supernovae. A young supernova remnant is inserted in the first star's relic H II region in the free expansion phase and is followed for 40 Myr employing adaptive mesh refinement and Lagrangian tracer particle techniques. The supernova remnant remains partially trapped within the minihalo and the thin snowplow shell develops pronounced instability and fingering. Roughly half of the ejecta turn around and fall back toward the center of the halo, with 1% of the ejecta reaching the center in ∼ 30 kyr and 10% in ∼ 10 Myr. The average metallicity of the combined returning ejecta and the pristine filaments feeding into the halo center from the cosmic web is ∼ 0.001 − 0.01 Z , but the two remain unmixed until accreting onto the central hydrostatic core that is unresolved at the end of the simulation. We conclude that if Population III stars had less extreme masses, they promptly enriched the host minihalos with metals and triggered Population II star formation.
To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae exploding in close succession. Overall, supernova ejecta are highly inhomogeneously dispersed throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centers of the dark matter halos. Partial turbulent homogenization on scales resolved in the simulation is observed only in the densest clouds where the vortical time scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the cloud have gone into gravitational collapse, we predict that the abundances in second-generation stars will be deficient in the innermost mass shells of the supernova (if only one has exploded) or in the ejecta of the latest supernovae (when multiple have exploded). This indicates that hydrodynamics gives rise to biases complicating the identification of nucleosynthetic sources in the chemical abundance spaces of the surviving stars.
We present the Cosmic Lyman-α Transfer code (COLT), a massively parallel Monte-Carlo radiative transfer code, to simulate Lyman-α (Lyα) resonant scattering through neutral hydrogen as a probe of the first galaxies. We explore the interaction of centrally produced Lyα radiation with the host galactic environment. Lyα photons emitted from the luminous starburst region escape with characteristic features in the line profile depending on the density distribution, ionization structure, and bulk velocity fields. For example, anisotropic ionization exhibits a tall peak close to line centre with a skewed tail that drops off gradually. Idealized models of first galaxies explore the effect of mass, anisotropic H II regions, and radiation pressure driven winds on Lyα observables. We employ mesh refinement to resolve critical structures. We also post-process an ab initio cosmological simulation and examine images captured at various distances within the 1 Mpc 3 comoving volume. Finally, we discuss the emergent spectra and surface brightness profiles of these objects in the context of high-z observations. The first galaxies will likely be observed through the red damping wing of the Lyα line. Observations will be biased toward galaxies with an intrinsic red peak located far from line centre that reside in extensive H II super bubbles, which allows Hubble flow to sufficiently redshift photons away from line centre and facilitate transmission through the intergalactic medium. Even with gravitational lensing to boost the luminosity this preliminary work indicates that Lyα emission from stellar clusters within haloes of M vir < 10 9 M is generally too faint to be detected by the James Webb Space Telescope (JWST).
We investigate the process of metal-free star formation in the first galaxies with a highresolution cosmological simulation. We consider the cosmologically motivated scenario in which a strong molecule-destroying Lyman-Werner (LW) background inhibits effective cooling in low-mass haloes, delaying star formation until the collapse or more massive haloes. Only when molecular hydrogen (H 2 ) can self-shield from LW radiation, which requires a halo capable of cooling by atomic line emission, will star formation be possible. To follow the formation of multiple gravitationally bound objects, at high gas densities we introduce sink particles which accrete gas directly from the computational grid. We find that in a 1 Mpc 3 (comoving) box, runaway collapse first occurs in a 3 × 10 7 M dark matter halo at z ≈ 12 assuming a background intensity of J 21 = 100. Due to a runaway increase in the H 2 abundance and cooling rate, a self-shielding, supersonically turbulent core develops abruptly with ∼10 4 M in cold gas available for star formation. We analyse the formation of this selfshielding core, the character of turbulence and the prospects for star formation. Due to a lack of fragmentation on scales we resolve, we argue that LW-delayed metal-free star formation in atomic cooling haloes is very similar to star formation in primordial minihaloes, although in making this conclusion we ignore internal stellar feedback. Finally, we briefly discuss the detectability of metal-free stellar clusters with the James Webb Space Telescope.
We present results from three cosmological simulations, only differing in gas metallicity, that focus on the impact of metal fine-structure line cooling on stellar cluster formation in a high-redshift atomic cooling halo. Sink particles allow the process of gas hydrodynamics and accretion onto cluster stars to be followed for ∼ 4 Myr corresponding to multiple local free-fall times. At metallicities at least 10 −3 Z , gas is able to reach the CMB temperature floor and fragment pervasively resulting in a stellar cluster of size ∼ 1 pc and total mass ∼ 1000 M . The masses of individual sink particles vary, but are typically ∼ 100 M , consistent with the Jeans mass at T CMB , though some solar mass fragments are also produced. Below 10 −4 Z , fragmentation is strongly suppressed on scales greater than 0.01 pc and total stellar mass is lower by a factor of ∼ 3 than in the higher metallicity simulations. The sink particle accretion rates, and thus their masses, are determined by the mass of the gravitationally unstable gas cloud and prolonged gas accretion over many Myr, exhibiting features of both monolithic collapse and competitive accretion. Even considering possible dust induced fragmentation that may occur at higher densities, the formation of a bona fide stellar cluster seems to require metal line cooling and metallicities of at least ∼ 10 −3 Z .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.