Type XV collagen occurs widely in the basement membrane zones of tissues, but its function is unknown. To understand the biological role of this protein, a null mutation in the Col15a1 gene was introduced into the germ line of mice. Despite the complete lack of type XV collagen, the mutant mice developed and reproduced normally, and they were indistinguishable from their wild-type littermates. However, Col15a1-deficient mice showed progressive histological changes characteristic for muscular diseases after 3 months of age, and they were more vulnerable than controls to exercise-induced muscle injury. Despite the antiangiogenic role of type XV collagen-derived endostatin, the development of the vasculature appeared normal in the null mice. Nevertheless, ultrastructural analyses revealed collapsed capillaries and endothelial cell degeneration in the heart and skeletal muscle. Furthermore, perfused hearts showed a diminished inotropic response, and exercise resulted in cardiac injury, changes that mimic early or mild heart disease. Thus, type XV collagen appears to function as a structural component needed to stabilize skeletal muscle cells and microvessels.T ype XV collagen belongs to the heterogeneous group of non-fibril-forming collagens and is thought to be a homotrimer consisting of three ␣1(XV) collagen chains (1). It is characterized by a central highly interrupted triple helical domain and large N-and C-terminal noncollagenous domains (2-4), and it has been shown to be a chondroitin sulfate proteoglycan (5). Type XV collagen mRNAs are expressed in many tissues, but the highest mRNA levels in the mouse can be detected in the heart and skeletal muscle (4). The protein is shown by immunostaining to have a widespread tissue distribution and has been localized mainly to the basement membrane zones, although it can also be found in the fibrillar collagen matrix of some tissues (6, 7). Its function is not known, however.In terms of primary structure, type XV collagen is highly homologous with type XVIII collagen, and together they form a distinct subgroup among the collagens (1, 3). They have thrombospondin-1 sequence homology in the N terminus, seven homologous collagenous domains, and highly homologous Cterminal noncollagenous domains. Type XVIII collagen is the precursor of endostatin, which has been shown to have a potent antiangiogenic effect (8), and the highest degree of homology between collagen types XV and XVIII involves the C-terminal endostatin sequence. The corresponding fragment in type XV collagen has also been shown to have antiangiogenic activity (9, 10).To understand the biological function and significance of type XV collagen, we generated a mouse strain lacking in ␣1(XV) collagen chains by site-specific Cre-loxP-mediated deletion in embryonic stem (ES) cells (11). The data suggest a structural role for type XV collagen in providing mechanical stability between cells and the extracellular matrix in skeletal muscle fibers and microvessels. Col15a1 deficiency leads to functional rather than struct...
Viral entry into host cells requires endocytosis machineries of the host for viral replication. PmRab7, a Penaeus monodon small GTPase protein, was investigated for its function in vesicular transport during viral infection. The double-stranded RNA of Rab7 was injected into a juvenile shrimp before challenging with white spot syndrome virus (WSSV) or yellow head virus (YHV). PmRab7 mRNA was specifically decreased at 48 h after dsRNA-Rab7 injection. Silencing of PmRab7 dramatically inhibited WSSV-VP28 mRNA and protein expression. Unexpectedly, the silencing of PmRab7 also inhibited YHV replication in the YHV-infected shrimp. These results suggested that PmRab7 is a common cellular factor required for WSSV or YHV replication in shrimp. Because PmRab7 should function in the endosomal trafficking pathway, its silencing prevents successful viral trafficking necessary for replication. Silencing of PmRab7 could be a novel approach to prevent both DNA virus (WSSV) and RNA virus (YHV) infection of shrimp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.